朴素贝叶斯分类器重点

朴素贝叶斯分类器

1.全概率公式p(A)
2.贝叶斯定理p(B|A)
3.朴素贝叶斯:假设各条件特征独立同分布
p(c|x) = p(x|c)p© = p(x1|c)p(x2|c)p(x3|c)p©
主要是求p(x1|c),离散特征从样本中求得
4.特征为连续值的时候,对于朴素贝叶斯分类器:
p(x1|c) = 正态分布
假设了在c类别下,特征x1符合正态分布N(均值,方差)
5.当p(x1|c)=0时,分类质量下降,采用贝叶斯估计
引入Laplace校准,它的思想非常简单,就是对每个类别下所有划分的计数加1,这样如果训练样本集数量充分大时,并不会对结果产生影响。
6.优点:1)简单易懂、学习效率高; 2)分类过程中时空开销小。
7.缺点:算法以自变量之间的独立(条件特征独立)性和连续变量的正态性假设为前提,会导致算法精度在某种程度上受影响。

半朴素贝叶斯分类器

1.半朴素贝叶斯分类器原理:适当考虑一部分特征之间的相互依赖信息,从而既不需要进行完全联合概率计算,又不至于彻底忽略了比较强的特征依赖关系。
2. 独依赖估计:假设每个特征在类别之外最多依赖于一个其他特征p(x1,x2,x3|c) = p(x1|c,x2)p(x2|c,x3)p(x3|c,x2) 其中:x1依赖x2,诸如此类
3.问题:如何确定每个特征的父特征?
SPODE方法TAN方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值