机器学习——贝叶斯分类器

本文介绍了贝叶斯分类器,重点讨论了贝叶斯定理及其在机器学习中的应用,特别是朴素贝叶斯分类器。通过案例分析了贝叶斯定理在吸毒检测中的作用,并阐述了朴素贝叶斯分类器的数学模型和分类准则,包括条件概率估计和极大似然估计方法。
摘要由CSDN通过智能技术生成

1.贝叶斯分类器属于生成式模型

对于数据的判别分类有两种策略模型:判别式模型和生成式模型
判别式模型
: 逻辑回归、决策树、支持向量机等为常见的判别式模型,这种模型需要人为的设定好模型框架,假如Y=WX+B>1为好瓜,Y=WX+B<=1为坏瓜,然后通过数据的训练,不断地修正模型参数,模型对于目标变量的条件预测也就更加准确。再比如决策树,通过信息熵,信息增益等判断标准,对好瓜具有的属性进行判别选择,通过对数据的学习,得到决策模型。
生成式模型
: 生成方法是通过数据学习得到联合概率分布P(Y,X),也就是求出条件概率P(X|Y)和先验概率P(Y)来作为预测模型的预测基础。在西瓜书中便是让模型学习好瓜具有什么属性,然后根据这些属性来判断什么是好瓜。

2.贝叶斯定理

贝叶斯公式
在这里插入图片描述
该公式描述的是随机事件A和B在其中某事件发生的情况下发生的概率,其中分子描述的是事件A、B都发生的联合概率,分母描述的是事件A发生的全概率,补充公式如下:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值