1.贝叶斯分类器属于生成式模型
对于数据的判别分类有两种策略模型:判别式模型和生成式模型
判别式模型
: 逻辑回归、决策树、支持向量机等为常见的判别式模型,这种模型需要人为的设定好模型框架,假如Y=WX+B>1为好瓜,Y=WX+B<=1为坏瓜,然后通过数据的训练,不断地修正模型参数,模型对于目标变量的条件预测也就更加准确。再比如决策树,通过信息熵,信息增益等判断标准,对好瓜具有的属性进行判别选择,通过对数据的学习,得到决策模型。
生成式模型
: 生成方法是通过数据学习得到联合概率分布P(Y,X),也就是求出条件概率P(X|Y)和先验概率P(Y)来作为预测模型的预测基础。在西瓜书中便是让模型学习好瓜具有什么属性,然后根据这些属性来判断什么是好瓜。
2.贝叶斯定理
贝叶斯公式:
该公式描述的是随机事件A和B在其中某事件发生的情况下发生的概率,其中分子描述的是事件A、B都发生的联合概率,分母描述的是事件A发生的全概率,补充公式如下: