图文详解部署deepseekR1模型:Win11本地部署deepseek R1:7B大模型:Ollama+deepseekR1+OpenWebUI+Hyper-V部署教程。 模型参数70亿

前言:技术简介

亲爱的家人们,创作很不容易,若对您有帮助的话,请点赞收藏加关注哦,您的关注是我持续创作的动力,谢谢大家!有问题请私信或联系邮箱:fn_kobe@163.com

①Ollama
定位:一个本地部署大语言模型(LLM)和相关工具的平台。
功能:帮助用户在本地环境中运行、测试和管理 AI 模型,而无需依赖云服务。
优势:数据本地化、隐私性较高,并能定制化部署。

②Deepseekr1
定位:国产AI大模型,干翻美股的AI新势力。
功能:侧重于深度搜索、数据分析或智能检索功能。
优势:通过深度学习技术,实现高效的信息搜索与分析)。

③OpenWebUI
定位:一个开源的网络用户界面,用于管理和交互操作。
功能:提供直观的网页界面,让用户可以通过浏览器对模型、工具或系统进行配置、监控和操作。
优势:界面友好、易于上手,降低了使用门槛和运维复杂度。

④Hyper-V
定位:微软提供的虚拟化平台。
功能:允许用户在单一物理服务器上创建和管理多个虚拟机。
优势:资源隔离、提高利用率、支持测试环境和生产环境的分离,为运行像 Ollama 这样需要特定环境支持的工具提供安全、稳定的虚拟平台。

⑤总体来说
集成应用:将 Ollama 平台及其内部模型(例如 Deepseekr1)通过 OpenWebUI 提供友好的操作界面进行管理和使用;同时,通过 Hyper-V 构建虚拟化环境,为这些工具的部署、测试和生产运行提供稳定且隔离的基础设施支持。
适用场景:适合需要在本地部署、管理大语言模型和深度数据检索工具的场景,同时又希望借助虚拟化技术保障系统稳定性和安全性的用户。

一、笔者电脑配置

笔者电脑配置如下:
①OS:Win11
②内存:64G
③磁盘:1.5T
④CPU:14核 20线程
⑤GPU:RTX3060
ps:内存尽量在16G以上
在这里插入图片描述

二、安装Ollama

2.1、下载Ollama安装包

①登录Ollama官网下载Ollama安装包,选择相应操作系统,建议另存安装C盘以外地方
在这里插入图片描述

2.2、安装Ollama

①Windows下安装Ollama简单,双击.exe运行安装
②打开win+r终端,输入cmd,命令行输入ollama,若出现下图所示则安装成功
在这里插入图片描述

2.3、配置Ollama模型路径(超级重要)

2.3.1、模型路径原配置

因为windows 的安装默认不支持修改程序安装目录,
①默认安装后的目录:C:\Users\username\AppData\Local\Programs\Ollama
②默认安装的模型目录:C:\Users\username\ .ollama
③默认的配置文件目录:C:\Users\username\AppData\Local\Ollama

2.3.2、更改模型路径原配置

由于Ollama的模型默认会在C盘用户文件夹下的.ollama/models文件夹中,避免C盘容量紧张,需要配置环境变量OLLAMA_MODELS,设置为指定的路径,如F:\LLM\ollama
①窗口搜索环境变量并打开
在这里插入图片描述
②依次执行并添加系统环境变量:变量名:OLLAMA_MODELS 变量值:F:\LLM\ollama(添加自己电脑的文件目录即可),最后一定要依次点击确定
在这里插入图片描述

2.4、下载deepseek R1模型

2.4.1、deepseek模型选择

①进入ollama官网,根据一下步骤
在这里插入图片描述

2.4.2、部署deepseek R1模型:7B

温馨提示:模型的参数大小根据自己电脑的配置选择,部署的本地模型越大,使用的深度求索效果就越好。相应的配置表如下:
在这里插入图片描述

①win + r打开终端,输入cmd,输入ollama run deepseek-r1:7b,安装过程比较漫长,约20分钟左右,成功会有如下提示:在这里插入图片描述
在这里插入图片描述

2.4.3、模型问答测试

在这里插入图片描述

至此:deepseek R1:7B本地部署已完成

①由于终端问答测试不美观,需要安装OpenWebUI在Web端测试

三、安装OpenWebUI

3.1、安装Docker

3.1.1、下载Docker

下载地址
在这里插入图片描述

3.1.2、启动微软Hyper-V

①依次操作:控制面板→查看方式-→程序→启用或关闭Windows功能→勾选Hyper-V→重启电脑后安装成功
在这里插入图片描述
注意事项:
①若没有Hyper-V选项,使用如下命令安装

pushd "%~dp0"

dir /b %SystemRoot%\servicing\Packages\*Hyper-V*.mum >hv.txt

for /f %%i in ('findstr /i . hv.txt 2^>nul') do dism /online /norestart /add-package:"%SystemRoot%\servicing\Packages\%%i"

del hv.txt

Dism /online /enable-feature /featurename:Microsoft-Hyper-V -All /LimitAccess /ALL

Pause

②将上述命令复制到Hyper-V.bat批处理文件中,然后以管理员身份运行,并重启电脑
在这里插入图片描述

3.1.3、安装Docker

①将3.1.1步骤中下载的.exe文件双击执行
在这里插入图片描述

②打开并测试Docker,一般用命令行操作
在这里插入图片描述

3.1.4、Docker切换国内镜像源

①操作如下:设置→Docker Engine→复制添加→Apply&restart

{
  "registry-mirrors": [
    "https://82m9ar63.mirror.aliyuncs.com",
    "http://hub-mirror.c.163.com",
    "https://docker.mirrors.ustc.edu.cn"
  ],
  "builder": {
    "gc": {
      "defaultKeepStorage": "20GB",
      "enabled": true
    }
  },
  "experimental": false,
  "features": {
    "buildkit": true
  }
}

3.2、安装OpenWebUI

安装地址
①进入github地址,下拉找到如图命令
在这里插入图片描述
win+r后,cmd打开终端,输入命令:docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main
ps:安装比较漫长,请耐心等待
在这里插入图片描述

3.3、Web访问测试

①访问地址http://localhost:3000/。 前提是终端后台启动Docker DeskTop和deepseek R1:7B,启动方式如下:
deepseek-r1:7b:win+r后,输入cmd,再输入命令:ollama run deepseek-r1:7b
Docker DeskTop:双击快捷方式启动即可
在这里插入图片描述

②提问测试
在这里插入图片描述

四、总结与感谢

①利用Hyper-V创建虚拟化环境,通过Ollama高效管理和部署deepseek R1大语言模型,并结合OpenWebUI提供直观的交互界面,这些技术的结合能够实现高效、灵活的自然语言处理应用开发与测试,适用于多种场景的智能化解决方案。

②以上内容和步骤亲测有效,若有问题请私信我,创作不易,亲爱的家人们多多支持哦!

### 关于 DeepSeek R1 7B 的技术信息 DeepSeek R1 7B 是一款大型语言模型,在 Neo4j 平台上用于构建知识图谱并执行复杂查询操作。该模型具备强大的自然语言处理能力,能够有效解析和理解非结构化数据,从而支持高效的知识表示和推理[^1]。 #### 主要特性 - **大规模参数量**:拥有约 70 亿个参数,使得模型具有更丰富的表达能力和更高的准确性。 - **优化的架构设计**:采用先进的 Transformer 结构改进版本,提高了计算效率的同时降低了内存占用。 - **高效的量化方案**:通过特定的技术手段实现了低精度 (2-bit) 权重量化而不显著损失性能,这有助于加速推理过程并减少存储需求。 - **优秀的迁移学习表现**:预训练阶段积累了广泛领域内的通用特征,可以快速适应不同应用场景下的微调任务。 #### 获取方式和技术文档 对于希望获取更多关于 DeepSeek R1 7B 技术细节以及下载链接的研究人员或开发者而言: - 官方网站通常会提供最权威的第一手资料,建议访问项目主页查阅最新发布的白皮书、API 文档等资源。 - GitHub 或其他开源平台也可能托管有该项目的相关代码库,其中往往包含了详细的安装指南、配置说明及示例程序。 - 社区论坛和支持渠道也是不容忽视的信息源之一;在这里可以获得来自官方团队和其他用户的宝贵经验分享和技术交流机会。 ```bash # 假设存在一个命令可以直接拉取模型及其配套工具包 git clone https://github.com/deepseek-lm/DeepSeek-R1.git cd DeepSeek-R1 pip install . ```
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

逻辑魔法师Jack

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值