小廖要加油~
一. 题目描述
二. 解法
1. 解法一:
原理:题目问题是找出多少个非负整数使它的阶乘后的0个数为K,可知的是非负整数阶乘后零的个数是单调不减的,所以在求问题解的时候,可以用二分查找法,用右边界减去左边界+1就是问题的解。那么问题就可以分为两大步,第一步就是如何求非负整数的阶乘后零的个数,第二步就是进行二分查找。
求非负整数的阶乘后零的个数:
可知要判断非负整数阶乘后有多少个零,则就是判断该数含有多少个因子5跟2,由于只要是偶数就含有因子2,所以以因子5的个数来计算。可知的是每有一个因子5,该数的阶乘后就增加1个0,每有一个因子25,该数的阶乘后就又可额外增加1个0,每有一个因子125,该数的阶乘后又可额外增加1个0,以此类推。5的阶乘后有一个0,25的阶乘后有2个0,125的阶乘后有3个0。
二分查找:
最终返回值
2. 解法二:
相比解法一更简单一些
原理:就是可知最后返回的结果个数不是5就是0(每隔5就会多出含5或者25等的因子,阶乘后零就会增加),所以只要在二分查找过程中只要存在某数的阶乘0的个数为k,则返回5,如果查找不到,则返回0,极大地节省了时间,提高了运行效率。