给定一个范围在 1 ≤ a[i] ≤ n ( n = 数组大小 ) 的 整型数组,数组中的元素一些出现了两次,另一些只出现一次。
找到所有在 [1, n] 范围之间没有出现在数组中的数字。
您能在不使用额外空间且时间复杂度为O(n)的情况下完成这个任务吗? 你可以假定返回的数组不算在额外空间内。
示例:
输入:
[4,3,2,7,8,2,3,1]
输出:
[5,6]
思路:
- 根据题目特点,可以将数组中的元素与索引建立一一对应的关系,因为索引是确定的0-n-1,而元素缺了哪个谁也不知道。
- 既然建立了一一对应的关系,那我们就可以对 已经对应的元素的索引做一个标记,这样我们就可以通过未做标记的索引找到缺失的元素
具体做法:
- 通过遍历每个元素,对其所在的索引做标记(记为负数)
- 遍历索引,找到不是负数的索引
class Solution {
public List<Integer> findDisappearedNumbers(int[] nums) {
//创建一个List,用来存放结果
List <Integer> list = new ArrayList<>();
//遍历数组,将元素对应的索引做标记
for(int i = 0;i<nums.length;i++){
int num = Math.abs(nums[i]);
int index = num -1;
if(nums[index]>0)
nums[index] *= -1;
}
//寻找没有索引的位置,将元素都添加到list中
for(int i =0;i<nums.length;i++){
if(nums[i]>0){
int num = i+1;
list.add(num);
}
}
return list;
}
}