Logic and Proofs



1.1 命题逻辑

逻辑规则可以指定数学语句的含义,用以区分数学论证的有效或无效。


(1)命题
一个陈述语句(陈述事实的语句),或者为真,或者为假(不含未知数)
(2)命题变量
字母表示(p,q,r,s,…)
真值为真,T
真值为假,F
(3)原子命题
不可用简单的命题来表示的命题。
(4)复合命题
由已知命题用 逻辑运算符组合而来的命题。
(5)命题演算(命题逻辑)
命题的逻辑领域
(6) ¬ p \neg p ¬p (p的否定)
不是p的所指的情形
(7) p ∧ q p \land q pq ( p 并且 q,合取)
命题 p 和 q都为真,才为真。
(8) p ∨ q p \lor q pq ( p 或q,析取、兼或 inclusive or)
命题 p 和 q都为假,才为假。
(9) p ⊕ q p \oplus q pq (p和q 的异或)
命题 p 和 q只有一个为真时,才为真。
(10) p → q p \rightarrow q pq (蕴含)
条件语句(如果p,则q)
p为假设(前件、前提),q为结论(后件)。
p,q都为真,该语句为真。
p为假时(与q的真值无关),该语句都为真。
(11) p → q p \rightarrow q pq 的逆命题、逆否命题、反命题
converse: q → p q \rightarrow p qp
contrapositive: ¬ q → ¬ p \neg q \rightarrow \neg p ¬q¬p
inverse: ¬ p → ¬ q \neg p \rightarrow \neg q ¬p¬q
(12) p ↔ q p \leftrightarrow q pq(双向蕴含)
p当且仅当q
p,q值相同时,为真。
(13)复合命题的真值表
逻辑联结词
  • 合取
  • 析取
  • 异或
  • 蕴含
  • 双条件
(14)逻辑运算符的优先级
复合命题中逻辑运算符的作用顺序
(15)比特(bit)
具有2个可能值的符号(0和1)
1表示T(真),0表示F(假)
(16)布尔变量
一个变量的值或为真或为假
一个布尔变量可用一比特表示(0或1)
(17)比特运算
即逻辑联结词
将真值表中的T、F用1、0代替
程序设计语言中,用符号OR、AND和XOR表示 ∨ \lor ∧ \land ⊕ \oplus
(18) 比特串
0比特或多比特的序列。
长度为序列所含比特的数量。
(19)比特串上的位运算
长度相同的比特串进行位运算
  • 按位OR ( ∨ \lor
  • 按位AND ( ∧ \land )
  • 按位XOR ( ⊕ \oplus )

1.2 命题逻辑的应用

逻辑可用于

  • 软件和硬件的规范说明
  • 设计计算机电路
  • 构造计算机程序
  • 验证程序的正确性
  • 构造专家系统
  • 分析和求解谜题

(1)语句翻译
自然语言语句 → \rightarrow 命题变量和逻辑联结词组成的逻辑表达式(复合命题)
(2)系统规范说明
一致的(不能包含可能导致矛盾的相互冲突的需求)
用逻辑表达式表示自然语言语句,并使所有的规范说明都为真,也就是一致。
(3)布尔搜索
搜索采用命题逻辑的技术
联结词
  • AND(同时包含2个搜索项)
  • OR(2个搜索项之一或2项均匹配)
  • NOT(排除某个特定的搜索项)
(4)逻辑谜题
可用逻辑推理解决的谜题
  • 箱子中的宝藏
  • 骑士与无赖
  • 泥巴孩子
(5)逻辑电路(数字电路)
输入信号: p 1 , p 2 , . . . , p n p_1,p_2,...,p_n p1,p2,...,pn
输出信号: s 1 , s 2 , . . . , s n s_1,s_2,...,s_n s1,s2,...,sn
每个信号1比特(0表示关,1表示开)

(6)基本电路

  • 逆变器
  • 或门
  • 与门

1.3 命题等价式

给定复合命题,通过逻辑运算,生成具有相同真值的命题。


(1)复合命题分类
根据真值分类
  • 永真式(重言式):真值永远为真
  • 矛盾式:真值永远为假
  • 可能式
(2)逻辑等价式
具有相同真值的两个复合命题是逻辑等价的。
p和q逻辑等价: p ↔ q p \leftrightarrow q pq 是永真式,表示为 p ≡ q p \equiv q pq 或者 p ⇔ q p \Leftrightarrow q pq


(3)德·摩根定律扩展
恒等式
  • ¬ ( p 1 ∨ p 2 ∨ . . . ∨ p n ) ≡ ( ¬ p 1 ∧ ¬ p 2 ∧ . . . ∧ ¬ p n ) \neg (p_1 \lor p_2 \lor ... \lor p_n) \equiv (\neg p_1 \land \neg p_2 \land ...\land \neg p_n) ¬(p1p2...pn)(¬p1¬p2...¬pn)
    可以写成 ¬ ( ∨ j = 1 n p j ) ≡ ∧ j = 1 n ¬ p j \neg(\lor_{j=1}^np_j) \equiv \land_{j=1}^n \neg p_j ¬(j=1npj)j=1n¬pj
  • ¬ ( p 1 ∧ p 2 ∧ . . . ∧ p n ) ≡ ( ¬ p 1 ∨ ¬ p 2 ∨ . . . ∨ p n ) \neg(p_1 \land p_2 \land ... \land p_n) \equiv (\neg p_1 \lor \neg p_2 \lor ... \lor p_n) ¬(p1p2...pn)(¬p1¬p2...pn)
    可以写成 ¬ ( ∧ j = 1 n p j ) ≡ ∨ j = 1 n ¬ p j \neg(\land_{j=1}^np_j) \equiv \lor_{j=1}^n \neg p_j ¬(j=1npj)j=1n¬pj
(4)可满足性
可满足的: 存在一个对其变量的真值赋值使该复合命题为真(即使该复合命题是一个永真式或可满足式)
不可满足的:当且仅当该复合命题的否定是永真式。
(5)可满足性的应用
通过命题可满足性对谜题进行建模。
待仔细分析
  • n皇后问题
  • 数独

1.4 谓词与量词

谓词逻辑:表达数学和计算机科学中各种语句的意义,允许推理和探索对象之间的关系。
量词:某一性质对某一类型的所有对象均成立&存在一个对象使得某一特性成立。


(1)谓词
P(x):P表示谓词(关系),x是变量。
P(x)是命题函数P在x的值,给变量x赋值,语句P(x)成为命题(具有真值)。
(2)n位谓词(n元谓词)
P ( x 1 , x 2 , . . . , x n ) P(x_1,x_2,...,x_n) P(x1,x2,...,xn):命题函数P在n元组 ( x 1 , x 2 , . . . , x n ) (x_1,x_2,...,x_n) (x1,x2,...,xn)的值。
(3)前置条件和后置条件
前置条件:描述合法输入的语句。
后置条件:程序运行的输出应该满足的条件。
(4)量词
量化表示在何种程度上谓词对一定范围的个体成立。
  • 全称量词
    某一性质对于变量在某一特定域内的所有值均为真。
    P(x)的全称量化 ∀ x P ( x ) \forall xP(x) xP(x):P(x)对x在其论域的所有值为真。

  • 存在量词
    有一个个体使得某种性质成立。
    P(x)的存在量化 ∃ x P ( x ) \exists xP(x) xP(x):论域中存在一个个体x满足P(x)。

(5) 特定域
变量的 论域(全体域),简称为
(6)唯一性量词
∃ ! x P ( x ) \exists !xP(x) !xP(x) ∃ 1 x P ( x ) \exists_1xP(x) 1xP(x):存在一个唯一的 x x x使得 P ( x ) P(x) P(x)为真(避免使用)。
(7)有限域上的量词
域有限时(所有元素可以一一列出), ∀ x P ( x ) ≡ P ( x 1 ) ∧ P ( x 2 ) ∧ . . . ∧ P ( x n ) \forall xP(x) \equiv P(x_1) \land P(x_2) \land ... \land P(x_n) xP(x)P(x1)P(x2)...P(xn).
(8)量化和循环
循环查看变量x的论域中的n个对象的值,判断 P ( x ) P(x) P(x)的值是否为真。
(9)受限域的量词
限定一个量词的论域,变量必须满足的条件直接放在量词的后面。
  • 受限的全称量化 ≡ \equiv 一个条件语句的全称量化
  • 受限的存在量化 ≡ \equiv 一个合取式的存在量化
(10)量词的优先级
量词 ∀ \forall ∃ \exists 比所有逻辑运算符都具有更高的优先级。
(11)变量绑定
约束的:量词作用于变量x。
自由的:没有被量词约束或设置为等于某一特定值。
量词的作用域:逻辑表达式中量词作用到的部分。
  • 命题函数中的所有变量出现是约束的或者被设置为某个特定值 ⇒ \Rightarrow 命题
(12)涉及量词的逻辑等价式
S ≡ T S \equiv T ST :涉及谓词和量词的两个语句S和T逻辑等价。

∀ x ( P ( x ) ∧ Q ( x ) ) ≡ ∀ x P ( x ) ∧ ∀ x Q ( x ) \forall x(P(x) \land Q(x)) \equiv \forall xP(x) \land \forall xQ(x) x(P(x)Q(x))xP(x)xQ(x)
∃ x ( P ( x ) ∨ Q ( x ) ) ≡ ∃ x P ( x ) ∨ ∃ x Q ( x ) \exists x(P(x) \lor Q(x)) \equiv \exists xP(x) \lor \exists xQ(x) x(P(x)Q(x))xP(x)xQ(x)

(13)量化表达式的否定
量词的德·摩根定律:

¬ ( P ( x 1 ) ∧ P ( x 2 ) ∧ . . . ∧ P ( x n ) ) ≡ ¬ P ( x 1 ) ∨ ¬ P ( x 2 ) ∨ . . . ∨ ¬ P ( x n ) \neg (P(x_1) \land P(x_2) \land ... \land P(x_n)) \equiv \neg P(x_1) \lor \neg P(x_2) \lor ... \lor \neg P(x_n) ¬(P(x1)P(x2)...P(xn))¬P(x1)¬P(x2)...¬P(xn)

¬ ( P ( x 1 ) ∨ P ( x 2 ) ∨ . . . ∨ P ( x n ) ) ≡ ¬ P ( x 1 ) ∧ ¬ P ( x 2 ) ∧ . . . ∧ ¬ P ( x n ) \neg(P(x_1) \lor P(x_2) \lor ... \lor P(x_n)) \equiv \neg P(x_1) \land \neg P(x_2) \land ... \land \neg P(x_n) ¬(P(x1)P(x2)...P(xn))¬P(x1)¬P(x2)...¬P(xn)

(14) 自然语言语句翻译成逻辑表达式
选择合适的量词,再引入谓词(主义不同的论域对应的谓词)。
∀ x ( S ( x ) → C ( x ) ) \forall x(S(x) \rightarrow C(x)) x(S(x)C(x))
∃ x ( S ( x ) ∧ C ( x ) ) \exists x(S(x) \land C(x)) x(S(x)C(x))
(15)量词推理
多条语句,前面的语句称为前提(premise),最后一句称为结论(conclusion),这些语句合在一起作为一个整体称为一个论证(argument)。
(16)逻辑程序设计
使用谓词逻辑的规则进行推理。
  • Prolog事实:通过指定满足谓词的元素来定义谓词(类似数据库中的各项基本条目)。
  • Prolog规则:由已定义好的谓词来定义新的谓词(类似数据库中的基本条目的新的组合,也就是建立基本条目之间的关系)。

1.5 嵌套量词

(1)嵌套量词
一个量词出现在另一个量词的作用域内。
(2)量化与循环
处理多个变量的量化式时,可以利用嵌套循环(仅限于变量的论域中的元素有限)。
  • ∀ x ∀ y P ( x , y ) \forall x \forall yP(x,y) xyP(x,y)
    \quad 先对x的所有值做循环,而对x的每个值再对y的所有值做循环。对x,y的所有值P(x,y)都为真,即为真。
  • ∀ x ∃ y P ( x , y ) \forall x \exists yP(x,y) xyP(x,y)
    \quad 对x的每个值,对y的值循环直到找到一个y使P(x,y)为真。如果对x的所有值,都有一个这样一个y值,即为真。
  • ∃ x ∀ y P ( x , y ) \exists x \forall yP(x,y) xyP(x,y)
    \quad 对x的值循环直到找到某个x,对y的所有值循环时,P(x,y)总为真,即为真。
  • ∃ x ∃ y P ( x , y ) \exists x \exists yP(x,y) xyP(x,y)
    \quad 对x循环,循环时对x的每个值都对y的值循环,直到找到x的一个值和y的一个值使P(x,y)为真。
(3)量词的顺序
除非所有量词均为全称量词或均为存在量词,否则量词的顺序不同,表达的意思也不同。
- 两个变量的量化式
(4)数学语句翻译成嵌套量词语句
注意论域,量词顺序。
(5)嵌套量词翻译成自然语言语句
①写出表达式中量词和谓词的含义
②用简单的句子来表达这个含义
(6)自然语言翻译成逻辑表达式
逻辑表达式可能涉及谓词、量词以及逻辑联结词。
  • 空量词规则
  • 唯一性存在
(7)嵌套量词否定
连续应用单个量词语句的否定规则。

1.6 推理规则

(1)数学证明
建立数学命题真实性的有效论证
(2)论证
一连串的命题并以结论为最后的命题
(3)有效性
结论或论证的最后一个命题必须根据论证过程前面的命题或前提(premise)的真实性推出。
(4)谬误(fallacy)
错误的推理
(5)命题逻辑的有效论证
前 提 1 前提1 1
前 提 2 前提2 2
————
∴ 结 论 \therefore 结论
(前提1 ∧ \land 前提2 ∧ \land ∧ \land 前提n) → \rightarrow 结论,是一个永真式。
当前提都为真,并且结论也为真时,就说这种论证形式是 有效的

!!! \quad 有效论证不一定能够得出结论为真,必须前提为真,结论才为真。

(6)论证 → \rightarrow 论证形式
在分析一个论证时,用命题变量代替命题。
(7)命题逻辑中的论证
是一连串的命题。最后一个命题叫作结论,前面的所有命题都是前提。
有效论证: 它的所有前提为真蕴含着结论为真。 ( p 1 ∧ p 2 ∧ . . . ∧ p n ) → q (p_1 \land p_2 \land ... \land p_n) \rightarrow q (p1p2...pn)q
(8)命题逻辑中的论证形式
一连串设计命题变量的复合命题。
有效的论证形式:无论用什么特定命题来替换其中的命题变量,若前提均真时结论为真。 ( p 1 ∧ p 2 ∧ . . . ∧ p n ) → q (p_1 \land p_2 \land ... \land p_n) \rightarrow q (p1p2...pn)q 是永真式。
(9)推理规则(rules of inference)
一些简单的有效的论证形式。
(10)假言推理(modus ponens)或分离规则
这两种推理规则的基础是永真式 ( p ∧ ( p → q ) ) → q (p \land (p \rightarrow q)) \rightarrow q (p(pq))q
(11) 假言推理
如果一个条件语句以及它的前提都为真,那么结论肯定为真。
这是一个有效论证,但是若前提有假的话,不能得出结论为真。
(12)推理规则
命题逻辑中的推理规则
(13)使用推理规则建立论证
具有多个前提时,运用多个推理规则来证明一个论证是有效的。(论证的每个步骤显示在不同的行,并明确写出每一步的理由)
(14)消解律(resolution)
程序利用消解律这个推理规则,将 定理的推理和证明任务自动化
该推理规则基于永真式: ( ( p ∨ q ) ∧ ( ¬ p ∨ r ) ) → ( q ∨ r ) ((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r) ((pq)(¬pr))(qr)
消解式 : q ∨ r q \lor r qr (resolvent)
步骤:
  • q ≡ r q \equiv r qr, 得: ( p ∨ q ) ∧ ( ¬ p ∨ q ) → q (p \lor q) \land (\neg p \lor q) \rightarrow q (pq)(¬pq)q
  • r ≡ F r \equiv F rF,得: ( p ∨ q ) ∧ ( ¬ p ) → q (p \lor q) \land (\neg p) \rightarrow q (pq)(¬p)q,这是一个永真式。
(15)使用消解律构建自动定理证明系统
仅使用消解律这个推理规则来构造命题逻辑中的证明
  • 假设&结论必须表示为子句
  • 子句:变量或其否定的一个析取式
  • 将命题逻辑中非子句的语句用一个或多个等价的子句语句来替换。
(16)谬误
看上去像是推理规则,但由于是基于可满足式而不是永真式,因此是不正确的论证。
(17)肯定结论的谬误
命题 ( ( p → q ) ∧ q ) → p ((p \rightarrow q) \land q) \rightarrow p ((pq)q)p不是一个永真式,因为当 p p p 为假而 q q q 为真时,它为假。
(18)否定假设的谬误
命题 ( ( p → q ) ∧ ¬ p ) → ¬ q ((p \rightarrow q) \land \neg p) \rightarrow \neg q ((pq)¬p)¬q不是永真式,因为当 p p p为假而 q q q 为真时,它为假。
(19)量化命题的推理规则
主要分为4类:
  • 全称实例(universal instantiation):从给定前提 ∀ x P ( x ) \forall xP(x) xP(x)得出 P ( c ) P(c) P(c)为真。
  • 全称引入(universal generalization):对论域中的所有元素 c c c都有 P ( c ) P(c) P(c)为真的前提推出 ∀ x P ( x ) \forall xP(x) xP(x)为真。
  • 存在实例(existtential instantiation):如果知道 ∃ x P ( x ) \exists xP(x) xP(x)为真,得出论域中存在一个元素 c c c使得 P ( c ) P(c) P(c)为真。
  • 存在引入(existential generalization):已知有一特定的 c c c使 P ( c ) P(c) P(c)为真时得出 ∃ x P ( x ) \exists xP(x) xP(x)为真。
(20)全称假言推理
全称实例+假言推理组合使用
如:前提 ∀ x ( P ( x ) → Q ( x ) ) \forall x(P(x) \rightarrow Q(x)) x(P(x)Q(x)) P ( a ) , a P(a),a P(a),a是论域中一个特定的元素,得到结论 Q ( a ) Q(a) Q(a)

1.7 证明导论

(1)非形式化证明(informal proof)
定理证明中:每个步骤会用到多于一条的推理规则,有些步骤会省略,并不显式地列出所用到的假设公理和推理规则(向人们解释定理为什么为真)。
(2)定理(theorem)
形式上就是一个能够被证明是真的语句(指比较重要的语句),也可称为事实(fact)或结论(result)。
是带一个或多个前提及一个结论的条件语句的全称量化式。
(3)命题
不太重要的定理。
(4)证明(proof)
建立定理真实性的有效论证,其中的语句可以包括公理(axiom) 或假设(postulate)
\quad 这些语句是假定为真的语句、定理的前提和以前被证明的定理。
(5)引理(lemma)
重要性略低但有助于证明其它结论的定理。
(6)推论(corollary)
从一个已经被证明的定理之间再建立的另一个定理。
(7)猜想(conjecture)
被提出认为是真的命题,若该猜想能被证明为真,就变成了定理;若猜想被证明为假,就不是定理。
(8)直接证明法(假设导向结论)
①假设 p p p为真
②使用推理规则构造
③表明 q q q一定为真
(9)奇数与偶数
整数 n n n为偶数,若存在一个整数 k k k使得 n = 2 k n=2k n=2k
整数 n n n为奇数,若存在一个整数 k k k使得 n = 2 k + 1 n=2k+1 n=2k+1
(10)反证法(proof by contraposition)
证明条件语句 p → q p \rightarrow q pq的逆否命题 ¬ q → ¬ p \neg q \rightarrow \neg p ¬q¬p为真。
¬ q \neg q ¬q作为前提,再用公理、定义、证明过的定理以及推理规则,证明 ¬ p \neg p ¬p必须成立。
(11)空证明(vacuous proof)
当知道 p p p为假时,可以很快证明条件语句 p → q p \rightarrow q pq为真,即为空证明。
(12)平凡证明(trivial proof)
通过证明 q q q为真,可以推出 p → q p \rightarrow q pq一定为真。
(13)有理数
实数 r r r是有理数,若存在整数 p p p q ( q ≠ 0 ) q(q \neq 0) q(q=0),使得 r = p / q r=p/q r=p/q。不是有理数的实数称为无理数。
(14)归谬证明法(proof by contradiction)
对某个命题 r r r,证明 ¬ p → ( r ∧ ¬ r ) \neg p \rightarrow (r \land \neg r) ¬p(r¬r)为真,即可证明 p p p为真,因为 r ∧ ¬ r r \land \neg r r¬r是矛盾式。
(15)等价证明法
证明 p ↔ q p \leftrightarrow q pq为真,即证明 p → q p \rightarrow q pq q → p q \rightarrow p qp都为真。
:因为重言式: ( p ↔ q ) ↔ ( p → q ) ∧ ( q → p ) (p\leftrightarrow q) \leftrightarrow (p \rightarrow q) \land (q \rightarrow p) (pq)(pq)(qp)
(16)反例证明法
要证明 ∀ x P ( x ) \forall xP(x) xP(x)为假,只有找到存在一个例子 x x x使 P ( x ) P(x) P(x)为假即可。
(17)谬误——窃取论题(循环推理)
证明的一个或多个步骤基于待证明的命题的真实性(即在证明过程已经把要证明的当作是真的)。

1.8 证明的方法和策略

(1)分情形证明法(proof by cases)
必须覆盖定理中出现的所有可能情况。
为证明条件语句:
( p 1 ∨ p 2 ∨ . . . ∨ p n ) → q (p_1 \lor p_2 \lor ... \lor p_n) \rightarrow q (p1p2...pn)q
可以分别证明每个条件语句 p i → q ( i = 1 , 2 , . . . , n ) p_i \rightarrow q(i=1,2,...,n) piq(i=1,2,...,n)为真来证明。
(2)穷举证明法(exhaustive proof,proof by exhaustion)
检验相对少量例子来证明。
(3)不失一般性(without loss of generality,WLOG)
在分情形证明方法中,某种情形的论证可以用来完成另一种情形的论证时,只用论证其中一种情形即可。
(4)存在性证明(existence proof)
证明 ∃ x P ( x ) \exists xP(x) xP(x)这类命题。
  • 构造性(constructive)的存在性证明:找到一个使得 P ( a ) P(a) P(a)为真的元素 a a a
  • 非构造性(nonconstructive)的存在性证明:以某种其他的方式证明 ∃ x P ( x ) \exists xP(x) xP(x)为真。
    \quad \quad 非构造性存在性证明:蚕食游戏
(5)唯一性证明(uniqueness proof)
恰好只有一个元素具有此性质,分为两个部分:
  • 存在性:证明存在某个元素 x x x具有期望的性质。
  • 唯一性:证明如果 x x x y y y都具有期望的性质,则 x = y x=y x=y

: 等同于证明语句: ∃ x ( P ( x ) ∧ ∀ y ( y ≠ x → ¬ P ( y ) ) ) \exists x(P(x) \land \forall y(y \neq x \rightarrow \neg P(y))) x(P(x)y(y=x¬P(y)))

(6)正向推理(forward reasoning)
为证明找到一个起点(无论是从前提还是结论的否定开始),再来构造证明。
(7)反向推理(backward reasoning)
要反向推理证明命题 q q q,就寻找一个命题 p p p,并可证明其具有性质 p → q p \rightarrow q pq
(8)寻找反例
对于一个猜想,若无法证明,则可以尝试寻找一个反例。
(9)拼接
标准棋盘(standard checkboard)
拼板(board):任意大小的矩形棋盘
骨牌(domino):一块一乘二的方格组成的矩形
拼接(tiled):一个拼板的所有方格由不重叠的骨牌覆盖并且没有骨牌悬空,即该拼板有骨牌所拼接。
(10)骨牌类型
多联骨牌(ploymino):用同样的方格沿边粘连起来构成的相同形状的板块而不是骨牌来做拼接。
若能通过旋转和翻转其中一个而能得到另一个,则将两个具有相同数量方格的国联骨牌当作一样的,
  • 直三联骨牌(straight triomino)
  • 职教三联骨牌(right triomino)
(11)开放问题
数学的许多进展是人们在视图解决著名的悬而未决的问题时而做出的。
  • 费马达定理
  • 3 x + 1 3x+1 3x+1猜想
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Casola, V., & Castiglione, A. (2020). Secure and Trustworthy Big Data Storage. Springer. Corriveau, D., Gerrish, B., & Wu, Z. (2020). End-to-end Encryption on the Server: The Why and the How. arXiv preprint arXiv:2010.01403. Dowsley, R., Nascimento, A. C. A., & Nita, D. M. (2021). Private database access using homomorphic encryption. Journal of Network and Computer Applications, 181, 103055. Hossain, M. A., Fotouhi, R., & Hasan, R. (2019). Towards a big data storage security framework for the cloud. In Proceedings of the 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, USA (pp. 402-408). Rughani, R. (2019). Analysis of Security Issues and Their Solutions in Cloud Storage Environment. International Journal of Computer Trends and Technology (IJCTT), 67(6), 37-42. van Esbroeck, A. (2019). Zero-Knowledge Proofs in the Age of Cryptography: Preventing Fraud Without Compromising Privacy. Chicago-Kent Journal of Intellectual Property, 19, 374. Berman, L. (2021). Watch out for hidden cloud costs. CFO Dive. Retrieved from https://www.cfodive.com/news/watch-out-for-hidden-cloud-costs/603921/ Bradley, T. (2021). Cloud storage costs continue to trend downward. Forbes. Retrieved from https://www.forbes.com/sites/tonybradley/2021/08/27/cloud-storage-costs-continue-to-trend-downward/?sh=6f9d6ade7978 Cisco. (2019). Cost optimization in the multicloud. Cisco. Retrieved from https://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/cloud-cost-optimization/cost-optimization_in_multicloud.pdf IBM. (2020). Storage efficiency solutions. IBM. Retrieved from https://www.ibm.com/blogs/systems/storage-efficiency-solutions/ Microsoft Azure. (n.d.). Azure Blob storage tiers. Microsoft Azure. Retrieved from https://azure.microsoft.com/en-us/services/storage/blobs/#pricing Nawrocki, M. (2019). The benefits of a hybrid cloud strategy for businesses. DataCenterNews. Retrieved from https://datacenternews.asia/story/the-benefits-of-a-hybrid-cloud-strategy-for,请把这一段reference list改为标准哈佛格式
05-29

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值