Basic Structures: Sets,Functions,Sequences,Sums,Matrices



2.1 集合

集合用于把对象聚集在一起,该集合中的对象具有相似的性质。


(1)集合
不同对象的一个 无序的聚集,对象也可称集合的元素(element)或成员(member), a ∈ A a \in A aA a ∉ A a \notin A a/A
(2)描述集合:
花名册方法(roster method): 花括号之间列出所有元素。
集合构造器(set builder): {x|x具有性质P}
(3)空集(empty set或null set)
不含任何元素的集合,用 ∅ \varnothing { } 表示。
(4)单元素集(singleton set)
只含一个元素的集合。
区分: ∅ \varnothing 与{ ∅ \varnothing },{ ∅ \varnothing }的唯一元素是空集本身。
(5)朴素集合论
集合的直觉定义&无论什么性质都存在一个恰好有具有该性质的对象组成的集合 → \rightarrow 悖论(paradox)或逻辑不一致性。
朴素集合论 → \rightarrow 处理悖论,保持一致性。
(6)文氏图
用于表示集合之间的关系。
全集 U U U:包含所考虑的全部对象,矩形框表示。
集合:矩形框内部,圆形或其他几何图形表示。
特定元素:点表示
(7)子集
A是B的子集(subset)&B是A的超集(superset):A的每个元素也是B的元素。
A ⊆ B A \subseteq B AB 或者 B ⊇ A B \supseteq A BA(二者等价)
(8)非空集合
非空集合S至少有2个子集:① ∅ ⊆ S \varnothing \subseteq S S ,② S ∅ S S \varnothing S SS
(9)真子集( A ⊂ B A \subset B AB )
A A A B B B 的子集,但是 A ≠ B A ≠ B A=B
∀ x ( x ∈ A → x ∈ B ) ∧ ∃ x ( x ∈ B ∧ x ∉ A ) \forall x ( x \in A \rightarrow x \in B ) \land \exist x ( x \in B \land x \notin A) x(xAxB)x(xBx/A)
(10)集合的大小
有限集: S S S 中有 n n n 个不同元素, n n n 为非负整数。
n n n S S S的基数( cardinality),记为 ∣ S ∣ | S | S
无限集合:集合不是有限的。
(11)幂集(power set)
P ( S ) \mathcal{P}(S) P(S):集合 S S S 所有子集的集合。
S S S n n n 个元素 → \rightarrow S S S 的幂集有 2 n 2^n 2n 个元素。
空集的幂集: P ( ∅ ) = \mathcal{P}(\varnothing) = P()={ ∅ \varnothing }
集合{ ∅ \varnothing }的幂集: P \mathcal{P} P({ ∅ \varnothing })={ ∅ \varnothing ,{ ∅ \varnothing }}
(12) 有序 n n n 元组(ordered n-tuple)
有序聚集: a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1a2...an
序偶(ordered pair):有序二元组
相等: a = c a=c a=c b = d b=d b=d 时,序偶 ( a , b ) = ( c , d ) (a,b) = (c,d) (a,b)=(c,d)
(13) 笛卡儿积(Cartesian producut)
A × B A \times B A×B:所有序偶 ( a , b ) (a,b) (a,b) 的集合。
A × B = A \times B = A×B= { ( a , b ) ∣ a ∈ A ∧ b ∈ B (a,b) \mid a \in A \land b \in B (a,b)aAbB}
A × B A \times B A×B的一个子集 R R R:从 A A A B B B 的关系(relation)。
(14)笛卡儿积(多集合)
A 1 × A 2 × . . . × A n A_1 \times A_2 \times ... \times A_n A1×A2×...×An = { ( a 1 , a 2 , . . . , a n ) ∣ a i ∈ A , i = 1 , 2 , . . . , n (a_1,a_2,...,a_n) \mid a_i \in A,i=1,2,...,n (a1,a2,...,an)aiA,i=1,2,...,n}
(15)带量词的集合符号
P ( x ) P(x) P(x) S S S 所有元素上的全称量化: ∀ x ∈ S ( P ( x ) ) ≡ ∀ x ( x ∈ S → P ( x ) ) \forall x \in S(P(x)) \equiv \forall x(x \in S \rightarrow P(x)) xS(P(x))x(xSP(x))
P ( x ) P(x) P(x) S S S 所有元素上的存在量化: ∃ x ∈ S ( P ( x ) ) ≡ ∃ x ( x ∈ S ∧ P ( x ) ) \exist x \in S(P(x)) \equiv \exist x(x \in S \land P(x)) xS(P(x))x(xSP(x))
(16)真值集(truth set)
{ x ∈ D ∣ P ( x ) x \in D \mid P(x) xDP(x) }: D D D 中使 P ( x ) P(x) P(x) 为真的元素 x x x组成的集合。

2.2 集合运算

两个或多个集合可以以多种不同的方式结合。


  1. 并集
    A ⋃ B = A\bigcup B = AB= { x ∣ x ∈ A ∨ x ∈ B x \mid x \in A \lor x \in B xxAxB}
    A 1 ⋃ A 2 ⋃ . . . ⋃ A n = ⋃ i = 1 n A i A_1 \bigcup A_2 \bigcup ... \bigcup A_n = \bigcup \limits_{i=1}^n A_i A1A2...An=i=1nAi
  2. 交集
    A ⋂ B = A\bigcap B = AB= { x ∣ x ∈ A ∧ x ∈ B x \mid x \in A \land x \in B xxAxB}
    若是交集为空集,则这两个集合是不相交的。
    A 1 ⋂ A 2 ⋂ . . . ⋂ A n = ⋂ i = 1 n A i A_1 \bigcap A_2 \bigcap ... \bigcap A_n = \bigcap \limits_{i=1}^n A_i A1A2...An=i=1nAi
  3. 包含排斥原理、容斥原理(principle of inclusion-exclusion) ——枚举技术
    ∣ A ⋃ B ∣ = \mid A \bigcup B \mid = AB= ∣ A ∣ + ∣ B ∣ − ∣ A ⋂ B ∣ \mid A \mid + \mid B \mid - \mid A \bigcap B \mid A+BAB
  4. 差集补集
    A − B = A-B= AB={ x ∣ x ∈ A ∧ x ∉ B x \mid x \in A \land x \notin B xxAx/B}
    A − B = A ⋂ B ‾ A-B= A \bigcap \overline{B} AB=AB
    包含属于 A A A 而不属于 B B B 的元素
    A A A B B B 的差集 → \rightarrow B B B 相对于 A A A 的补集。
  5. 集合的补集
    A ‾ = U − A = \overline {A}= U-A = A=UA={ x ∈ U ∣ x ∉ A x \in U \mid x \notin A xUx/A}
    U U U:全集
    A ‾ \overline {A} A A A A 相对于 U U U 的补集。
  6. 集合恒等式
  7. 证明集合恒等式
  8. 集合的计算机表示
    U U U 的子集 A A A a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1a2...an,用长度为 n n n 的比特串表示:
    a i ∈ A a_i \in A aiA,则比特串第 i i i 位是 1 1 1;若 a i ∉ A a_i \notin A ai/A,则是 0 0 0
  9. 多重集(multiset)
    一个元素的无序集,其中元素作为成员可以出现多于一次。
    { m 1 ⋅ a 1 , m 2 ⋅ a 2 , . . . , m r ⋅ a r m_1 \cdot a_1,m_2 \cdot a_2,...,m_r \cdot a_r m1a1m2a2...mrar}:表示元素 a 1 a_1 a1出现了 m 1 m_1 m1次…
    多重集的并取出现最大次数;
    交取最小次数;
    差取二者次数相减的最大次数,为负则取0;
    和取两者的和。

2.3 函数

为一个集合的每个元素指派另一个集合(也可以是第一个集合)中的一个特定元素。


  • 函数
    A A A的每个元素恰好指派 B B B的一个元素
    f ( a ) = b f(a)=b f(a)=b B B B 中元素 b b b 是唯一由函数 f f f 指派给 A A A 中元素 a a a 的。
    f : A → B f:A \rightarrow B fAB f f f 是从 A A A B B B 的元素。
  • 定义域和陪域
    定义域(domain): A A A f f f 的定义域。
    陪域(codomain): B B B f f f 的陪域。
  • 像和原像
    前提: f ( a ) = b f(a)=b f(a)=b
    b b b a a a 的像(image)
    a a a b b b 的原像(preimage)
    f f f 的值域(range)或像: A A A 中元素的所有像的集合。
  • 映射
    f f f 是从 A A A B B B 的函数: f f f A A A 映射(map) 到 B B B
  • 区分:陪域 & 值域
    ① 陪域 :这类函数所有可能值的集合(即 B B B的所有元素)。
    ② 值域:是对所有 a ∈ A a \in A aA f ( a ) f(a) f(a) 值的集合,所有那些能作为定义域中至少一个元素的 f f f 函数值的陪域中元素的集合。
    ③ 值域 ⊆ \subseteq 陪域。
    ④ 若陪域 = 值域,则 f f f 是映上函数。
  • 实值函数
    – 陪域是实数集合
    f 1 f_1 f1 f 2 f_2 f2 是从 A A A R R R 的函数,对任意 x ∈ A x \in A xA
    ( f 1 + f 2 ) ( x ) = f 1 ( x ) + f 2 ( x ) (f_1 + f_2)(x) = f_1(x) + f_2(x) (f1+f2)(x)=f1(x)+f2(x)
    ( f 1 f 2 ) ( x ) = f 1 ( x ) f 2 ( x ) (f_1f_2)(x) = f_1(x)f_2(x) (f1f2)(x)=f1(x)f2(x)
  • A A A 的子集的像
    S S S A A A 的一个子集
    ① { f ( s ) ∣ s ∈ S f(s) \mid s \in S f(s)sS}: S S S f f f 下的像,由 S S S 中元素的像组成的 B B B 的子集。
    f ( S ) = f(S) = f(S)={ t ∣ ∃ s ∈ S ( t = f ( s ) ) t \mid \exists s \in S(t = f(s)) tsS(t=f(s))} 简写为 { f ( s ) ∣ s ∈ S f(s) \mid s \in S f(s)sS}。
    f ( S ) f(S) f(S) 表示一个集合,而不是函数 f f f 在集合 S S S 处的值。
  • 一对一函数(单射函数)
    函数 f f f 是一对一(one-to-one) 或 单射(injection)的: f f f 的定义域中的所有 a a a b b b f ( a ) = f ( b ) f(a) = f(b) f(a)=f(b) 蕴含 a = b a=b a=b (即只要 a ≠ b a \neq b a=b 就有 f ( a ) ≠ f ( b ) f(a) \neq f(b) f(a)=f(b))。
  • 函数增减性
    ① 递增: x < y x < y x<y 时有 f ( x ) ⩽ f ( y ) ≡ ∀ x ∀ y ( x < y → f ( x ) ⩽ f ( y ) ) f(x) \leqslant f(y) \equiv \forall x \forall y(x < y \rightarrow f(x) \leqslant f(y) ) f(x)f(y)xy(x<yf(x)f(y))
    ② 递减: x < y x < y x<y 时有 f ( x ) ⩾ f ( y ) ≡ ∀ x ∀ y ( x < y → f ( x ) ⩾ f ( y ) ) f(x) \geqslant f(y) \equiv \forall x \forall y(x < y \rightarrow f(x) \geqslant f(y) ) f(x)f(y)xy(x<yf(x)f(y))
  • 映上函数(满射函数)
    函数 f f f 是映上(onto) 或满射(surjection)函数:对每个 b ∈ B b \in B bB 有元素 a ∈ A a \in A aA 使得 f ( a ) = f ( b ) f(a) = f(b) f(a)=f(b)(即 ∀ y ∃ x ( f ( x ) = y ) \forall y \exists x(f(x)=y) yx(f(x)=y) x , y x,y x,y 的论域分别是函数的定义域和陪域)。
  • 一一对应函数(双射函数)
    函数 f f f 是*一一对应(one-to-one correspondence) 或双射(bijection)函数:函数既是一对一的又是映上的。
  • 恒等函数
    A A A 上的恒等函数 ι A \iota_A ιA A → A A \rightarrow A AA,其中对所有的 x ∈ A x \in A xA,有 ι A ( x ) = x \iota_A(x) = x ιA(x)=x,是一个双射函数。
  • 反函数
    f f f:从 A A A B B B一一对应,否则不存在反函数。
    f − 1 f^{-1} f1 f f f 的反(逆)函数,指派给 B B B 中元素 b b b 的是 A A A 中使得 f ( a ) = b f(a) = b f(a)=b 的唯一元素 a a a
    f ( a ) = b → f − 1 ( b ) = a f(a) = b \rightarrow f^{-1}(b) = a f(a)=bf1(b)=a
  • 函数合成
    g g g:从 A A A B B B 的函数
    f f f:从 B B B C C C 的函数
    f ∘ g f \circ g fg f f f g g g 的合成(composition)
    对任意 a ∈ A a \in A aA,有 ( f ∘ g ) ( a ) = f ( g ( a ) ) (f \circ g)(a) = f(g(a)) (fg)(a)=f(g(a))
    定义域: g g g 的定义域
    值域: g g g的值域在 f f f 下的像

  • f f f 的图(graph):序偶集合 { ( a , b ) ∣ a ∈ A 且 f ( a ) = b (a,b) \mid a \in A 且 f(a) = b (a,b)aAf(a)=b}
  • 取整函数
    ⌊ x ⌋ \lfloor x \rfloor x:下取整函数(floor),小于或等于 x x x 的最大整数。
    ⌈ x ⌉ \lceil x \rceil x:上取整函数(floor),大于或等于 x x x 的最小整数。
  • 阶乘函数
    f : N → Z + ≡ f ( n ) = n ! f:N \rightarrow Z^+ \equiv f(n) = n! fNZ+f(n)=n!
  • 部分函数
    ① 从 A A A B B B 的部分函数(partial function) f f f:给 A A A 的一个子集中的每个元素 a a a 指派 B B B 中唯一的元素 b b b
    A A A B B B 分别是 f f f 的域和陪域。
    f f f 对于 A A A 中但不在 f f f 的定义域中的元素无定义(undefined)。
    ④ 若 f f f 的定义域等于 A A A 时, f f f 是全函数(total function)。

2.4 序列与求和

序列是元素的有序列表。


  • 序列
    从整数集的一个子集到一个集合 S S S 的函数
    a n a_n an:整数 n n n 的像,是序列(sequence)的一个项(term)。
  • 几何级数(geometric progression)
    a , a r , a r 2 , . . . , a r n , . . . a,ar,ar^2,...,ar^n,... a,ar,ar2,...,arn,... → f ( x ) = a r x \rightarrow f(x) = ar^x f(x)=arx
    初始项 a a a、公比 r r r:实数
  • 算术级数(arithmetic progression)
    a , a + d , a + 2 d , . . . , a + n d , . . . a,a+d,a+2d,...,a+nd,... a,a+d,a+2d,...,a+nd,...
    初始项 a a a、公差 d d d:实数

  • 串(strings):有穷序列,还可记作 a 1 a 2 . . . a n a_1a_2...a_n a1a2...an
    空串(empty string): λ \lambda λ,没有任何项的串,长度为0.
  • 递推关系
    序列{ a n a_n an}的递推关系(recurrence relation)是一个等式,对所有满足 n ⩾ n 0 n \geqslant n_0 nn0 n n n,把序列中的 a n a_n an 用序列中的前面项即 a 0 , a 1 , . . . , a n a_0,a_1,...,a_n a0,a1,...,an 中的一项或多项来表示。
  • 斐波那契数列
    斐波那契数列 f 0 , f 1 , f 2 , . . . f_0,f_1,f_2,... f0,f1,f2,... 由初始条件 f 0 = 0 、 f 1 = 1 f_0 = 0、f_1 = 1 f0=0f1=1 和递推关系 f n = f n − 1 + f n − 2 f_n = f_{n-1} + f_{n-2} fn=fn1+fn2 ( n = 2 , 3 , . . . ) (n=2,3,...) (n=2,3,...)
  • 闭公式(closed formula)
    序列的项的一个显式公式。
  • 迭代
    迭代(iteration)或重复利用递推关系。
    ① 正向替换:从初始条件出发找到连续的项直到 a n a_n an 为止。
    ② 反向替换:从 a n a_n an 开始迭代时将其表示为序列中前面的项直到可以用 a 1 a_1 a1 表示。
  • 构造序列的项
    ① 闭公式 ②递推关系 ③某种一般规则
  • Lucas序列
    初始条件: L 1 = 1 、 L 2 = 3 L_1 =1、L_2 = 3 L1=1L2=3
    递推关系: L n = L n − 1 + L n − 2 L_n =L_{n-1} + L_{n-2} Ln=Ln1+Ln2
  • 重要序列
  • 整数序列
    在线整数序列百科(Online Encyclopedia of Integer Sequences,OEIS)
    The On-Line Encyclopedia of Integer Sequences
  • 求和
    解决序列项的累加问题
    ∑ j = m n a j ∑ m ⩽ j ⩽ n a j \sum \limits_{j=m}^na_j \qquad \sum \limits_{m \leqslant j \leqslant n} a_j j=mnajmjnaj
  • 几何数列
    几何级数项的求和 → \rightarrow geometric series
    a a a r r r 都是实数且 r ≠ 0 r \neq 0 r=0,则:
  • 双重求和
    ∑ i = 1 m ∑ j = 1 n i j \sum \limits_{i=1}^m \sum \limits_{j=1}^n ij i=1mj=1nij:先展开内层求和,再计算外层求和。
  • 求和公式
  • 无穷级数

2.5 集合的基数

  • 有限集合的基数
    集合中的元素个数

  • 可数无限集
    和正整数集合具有相同基数的集合
    – 有理数集合:可数无限
    – 实数集:不可数

  • 基数(cardinality)
    若从 A A A B B B 存在一个一一对应(仅限于有限集)
    A A A B B B 具有相同基数,写作 ∣ A ∣ = ∣ B ∣ \mid A \mid =\mid B \mid A=B
    A A A 的基数小于或等于 B B B 的基数,写作 ∣ A ∣ ⩽ ∣ B ∣ \mid A \mid \leqslant \mid B \mid AB
    ③ 若 ∣ A ∣ ⩽ ∣ B ∣ \mid A \mid \leqslant \mid B \mid AB,且 A A A B B B 的基数不同,写作 ∣ A ∣ < ∣ B ∣ \mid A \mid < \mid B \mid A<B

  • 可数集合
    ① 一个集合或者是有限集或者与自然数集具有相同的基数,称该集合为可数的。
    ℵ 0 \aleph_0 0:集合 S S S 的基数(无限集 S S S 是可数的) → ∣ S ∣ = ℵ 0 \rightarrow \mid S \mid = \aleph_0 S=0

  • 希尔伯特大饭店
    证明某些对有限集不可能的事情对无限集变得可能 → \rightarrow 有可数无限多个房间,即使在所有房间都住满了客人,也可以不断地容纳一位新客人。

  • 不可数集合
    实数集合是不可数的。

  • 区分可数无限集合有限集合

  • 可数集合的并
    A A A B B B 都是可数集合,则 A ⋃ B A \bigcup B AB 也是可数集合。

  • Schr o ¨ \ddot{o} o¨der-Bernstein定理
    ∣ A ∣ ⩽ ∣ B ∣ \mid A \mid \leqslant \mid B \mid AB ∣ B ∣ ⩽ ∣ A ∣ \mid B \mid \leqslant \mid A \mid BA,则 ∣ A ∣ = ∣ B ∣ \mid A \mid = \mid B \mid A=B
    若存在一对一函数 f f f A A A B B B g g g B B B A A A,则存在 A A A B B B 之间的一一对应函数。

  • 可计算的函数
    存在计算机程序能计算该函数的值。

  • 连续统假设(contimuun hypothesis)
    (前提)康托尔定理:一个集合的基数总小于其幂集的基数。 ℵ 0 < 2 ℵ , 2 ℵ 0 = c \aleph_0 < 2^\aleph, 2^{\aleph_0} = c 0<2,20=c
    不存在介于 ℵ 0 \aleph_0 0 c c c 之间的基数 X X X,即不存在集合 A A A 使得正整数集合的基数 ℵ 0 \aleph_0 0 小于 ∣ A ∣ \mid A \mid A,而 ∣ A ∣ \mid A \mid A又小于实数集的基数 c c c,可得出 c = ℵ 1 c = \aleph_1 c=1,故有 2 ℵ 0 = ℵ 1 2^{\aleph_0}=\aleph_1 20=1.

2.6 矩阵

矩阵表示集合中元素之间的关系。


  • 矩阵(matrix)
    矩形状的数组

    i i i 行是 1 × n 1 \times n 1×n 矩阵[ a i 1 , a i 2 , . . . , a i n a_{i1},a_{i2},...,a_{in} ai1,ai2,...,ain]
    j j j 行是 n × 1 n \times 1 n×1 矩阵

    ( i , j ) (i,j) (i,j) 元素(element)或项(entry)是元素 a i j a_{ij} aij

  • 方阵(square)
    行数和列数相同的矩阵;若每个位置上的对应项都相等,则两矩阵相等。

  • 矩阵加法
    A A A B B B m × n m \times n m×n 矩阵
    A + B A + B A+B A A A B B B 的和, a i j + b i j a_{ij} +b_{ij} aij+bij

  • 矩阵乘积
    A A A m × k m \times k m×k 矩阵
    B B B k × n k \times n k×n 矩阵
    A B AB AB A A A B B B 的乘积, c i j = a i 1 b 1 j + a i 2 b 2 j + . . . + a i k b k j c_{ij} = a_{i1}b_{1j}+a_{i2}b_{2j}+...+a_{ik}b_{kj} cij=ai1b1j+ai2b2j+...+aikbkj

  • n阶单位矩阵(identity matrix of order n)
    n × n n \times n n×n 矩阵 I n = [ δ i j ] I_n=[\delta_{ij}] In=[δij](克罗内克积(kronecker delta))

  • 转置(transpose)
    A = [ a i j ] A=[a_{ij}] A=[aij] m × n m \times n m×n 矩阵
    A T = [ b i j ] A^T=[b_{ij}] AT=[bij] n × m n \times m n×m 矩阵
    [ b i j ] [b_{ij}] [bij]= [ a j i ] [a_{ji}] [aji] i = 1 , 2 , 3 , . . . , n i=1,2,3,...,n i=1,2,3,...,n j = 1 , 2 , 3 , . . . , m j=1,2,3,...,m j=1,2,3,...,m

  • 对称(symmertric)方阵
    A = A T A = A^T A=AT,并有 a i j = a j i a_{ij} = a_{ji} aij=aji

  • 0-1矩阵
    所有元非0即1的矩阵。
    A A A B B B m × n m \times n m×n 阶0-1矩阵
    A ∨ B A \lor B AB a i j ∨ b i j a_{ij} \lor b_{ij} aijbij
    A ∧ B A \land B AB a i j ∧ b i j a_{ij} \land b_{ij} aijbij
    二者仍是0-1矩阵。

  • 矩阵的布尔积
    A A A m × k m \times k m×k 阶0-1矩阵
    B B B k × n k \times n k×n 阶0-1矩阵
    A ⊙ B A \odot B AB A A A B B B 的布尔积(Boolean product), m × n m \times n m×n 阶矩阵 [ c i j ] [c_{ij}] [cij]
    c i j = ( a i 1 ∧ b 1 j ) ∨ ( a i 2 ∧ b 2 j ) ∨ . . . ∨ ( a i k ∧ b k j ) c_{ij} = (a_{i1} \land b_{1j}) \lor (a_{i2} \land b_{2j}) \lor... \lor (a_{ik} \land b_{kj}) cij=(ai1b1j)(ai2b2j)...(aikbkj)

  • 0-1方阵的布尔幂
    A [ r ] A^{[r]} A[r] A A A r r r 次布尔幂

    A [ 0 ] = I n A^{[0]}=I_n A[0]=In

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值