问题描述:
若n=4,在机器M1和M2上加工作业i所需的时间分别为ai和bi,且(a1,a2,a3,a4)=(4,5,10,9),(b1,b2,b3,b4)=(6,3,14,8)。
写出john贪心算法步骤,并按步骤求4个作业的最优调度方案,并计算最优值。
问题分析:
Johnson算法采用贪心思路,其步骤如下:
(1)把所有作业按照M1.M2的时间分为两组,a[i]<=b[i]对应第一组N1,a[i]>b[i]对应第0组N2
(2)将N1的作业按照a[i]递增排序,N2的作业按照b[i]递减排序。
(3)按顺序先执行N1的作业再执行N2的作业,得到的就是耗时最少的最优作业调度方案。
求在最优调度下耗费的总时间,用T1累计M1上的执行时间(T1要初始化为0),用T2累计M2上的执行时间(T2初始化也为0),最终的T2就是在最优调度下消耗的总时间。
对于最优调度方案best,用i扫描best的元素,T1和T2的计算如下:
T1=T1+a[best[i]]
T2=max{T1,T2}+b[best[i]]
具体知识点可以查看博客https://blog.csdn.net/weixin_44279771/article/details/105575382
👉