回溯法求解图的m着色问题
【问题描述】
给定无向连通图G和m种不同的颜色。用这些颜色为图G的各顶点着色,每个顶点着一种颜色。如果有一种着色法使G中每条边的两个顶点着不同颜色,则称这个图是m可着色的。图的m着色问题是对于给定图G和m种颜色,找出所有不同的着色法。
【输入格式】
第1行有3个正整数n、k和m,表示给定的图a有n个顶点和条边,m种颜色。顶点编号为1,2,…,n。接下来的k行中,每行有两个正整数u、v,表示图G的一条边(u,v) 。
【输出格式】
程序运行结束时,将计算出的不同的着色方案数输出。如果不能着色,程序输出-1。
【输入样例】
5 8 4
1 2
1 3
1 4
2 3
2 4
2 5
3 4
4 5
【输出样例)】
48
【问题求解】
对于图G,采用邻接矩阵a存储,根据求解问题需要,这里a为一个二维数组(下标0不用),当顶点i与顶点j有边时,置a[i][j]=1,其他情况置a[i][j]=0。
图中的顶点编号为1~n,着色编号为1~m。对于图G中的每一个顶点,可能的着色为1~m,所以对应的解空间是一棵m叉树,高度为n,层次i从1开始。
【核心代码】
bool Same(int i){
for(int j=1;j<=n;j++)
if(a[i][j]==1&&x[i]==x[j])
return false;
return true;
}
void dfs(int i){
if(i>n)
count++;
else{
for(int j=1;j<=m;j++){
x[i]=j;
if(Same(i))
dfs(i+1);
x[i]=0;
}
}
}