回溯法求解图的m着色问题

回溯法求解图的m着色问题

【问题描述】

给定无向连通图G和m种不同的颜色。用这些颜色为图G的各顶点着色,每个顶点着一种颜色。如果有一种着色法使G中每条边的两个顶点着不同颜色,则称这个图是m可着色的。图的m着色问题是对于给定图G和m种颜色,找出所有不同的着色法。

【输入格式】

第1行有3个正整数n、k和m,表示给定的图a有n个顶点和条边,m种颜色。顶点编号为1,2,…,n。接下来的k行中,每行有两个正整数u、v,表示图G的一条边(u,v) 。

【输出格式】

程序运行结束时,将计算出的不同的着色方案数输出。如果不能着色,程序输出-1。

【输入样例】
5 8 4
1 2
1 3
1 4
2 3
2 4
2 5
3 4
4 5
【输出样例)48

【问题求解】

对于图G,采用邻接矩阵a存储,根据求解问题需要,这里a为一个二维数组(下标0不用),当顶点i与顶点j有边时,置a[i][j]=1,其他情况置a[i][j]=0。
图中的顶点编号为1~n,着色编号为1~m。对于图G中的每一个顶点,可能的着色为1~m,所以对应的解空间是一棵m叉树,高度为n,层次i从1开始。

【核心代码】

bool Same(int i){
	for(int j=1;j<=n;j++)
	if(a[i][j]==1&&x[i]==x[j])
	return false;
	return true;
}
void dfs(int i){
	if(i>n)
	count++;
	else{
		for(int j=1;j<=m;j++){
			x[i]=j;
			if(Same(i))
			dfs(i+1);
			x[i]=0;
		}
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值