一:RDD与DataFrame转换
- 通过反射的方式来推断RDD元素中的元数据。因为RDD本身一条数据本身是没有元数据的,例如Person,而Person有name,id等,而record是不知道这些的,但是变成DataFrame背后一定知道,通过反射的方式就可以了解到背后这些元数据,进而转换成DataFrame。如何反射?
Scala: 通过case class映射,在case class里面说我们这个RDD里面每个record的不同列的元数据是什么。
Java: 如何描述数据的元数据?构建Java Bean,使用Java Bean构建元数据信息,然后变换成DataFrame,但是此种方法不可以构建DataFrame嵌套类型。 -
动态获取Schema,我们并不知道RDD的元数据信息,所以只能根据曾经运行时动态构建一份具体的元数据。然后将具体的元数据运行在存在的RDD上。而且这种情况比较常见。
二:代码实战
java
package com.dt.spark.SparkApps.sql; import java.util.List; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.Function; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.Row; import org.apache.spark.sql.SQLContext; public class RDDToDataFrameByReflection { public static void main(String[] args) { SparkConf conf = new SparkConf().setMaster("local").setAppName("RDDToDataFrameByReflection"); JavaSparkContext sc = new JavaSparkContext(conf); SQLContext sqlContext = new SQLContext(sc); //读取数据 JavaRDD<String> lines = sc.textFile("E://persons.txt"); JavaRDD<Person> persons = lines.map(new Function<String,Person>(){ private static final long serialVersionUID = 1L; @Override public Person call(String line) throws Exception { String[] splited = line.split(","); Person p = new Person(); p.setId(Integer.valueOf(splited[0].trim())); p.setName(splited[1].trim()); p.setAge(Integer.valueOf(splited[2].trim())); return p; } }); //第一个参数:RDD,第二个参数是JavaBean,Person类 //第二参数就是封装的JavaBean,JavaBean中封装了Person的元数据信息, //通过第二个参数DataFrame也就获得了元数据信息。 //在底层通过反射的方式获得Person的所有Fields,结合RDD本身,就生成了DataFrame DataFrame df = sqlContext.createDataFrame(persons, Person.class); df.registerTempTable("persons"); DataFrame bigDatas = sqlContext.sql("select * from persons where age >= 6"); //DataFrame => RDD JavaRDD<Row> bigDataRDD = bigDatas.javaRDD(); JavaRDD<Person> result = bigDataRDD.map(new Function<Row,Person>(){ private static final long serialVersionUID = 1L; @Override public Person call(Row row) throws Exception { //返回具体每条记录 Person p = new Person(); /** * 由于数据在DataFrame会进行优化,里面会对元数据进行排序 * 顺序可能就不是id name age的顺序了。 */ p.setId(row.getInt(1)); p.setName(row.getString(2)); p.setAge(row.getInt(0)); return p; } }); List<Person> personList = result.collect(); for(Person p : personList){ System.out.println(p); } }
}
或者
SparkSession sparkSession = SparkSession.builder()
.appName("ads_chpp_fence_trips_count")
.enableHiveSupport()
.getOrCreate();
JavaRDD
reslutRdd = sparkSession.sql(String.format(fence_real_sql, table_name, dis, day)).javaRDD().filter(new Function
() {
//终点在眉山附近300千米或者起点在眉山300公里
@Override
public Boolean call(Row row) throws Exception {
String e_fence_id = row.getString(7);
String s_fence_id = row.getString(1);
GeoCoord geoCoord = UberH3Util.h3ToGeoCenter(e_fence_id);
GeoCoord geoCoord1 = UberH3Util.h3ToGeoCenter(s_fence_id);
return Distance.getDistance(centerLon, centerLat, geoCoord.lng, geoCoord.lat) < distance
|| Distance.getDistance(centerLon, centerLat, geoCoord1.lng, geoCoord1.lat) < distance;
}
}).mapToPair(new PairFunction
>() {
@Override
public Tuple2
> call(Row row) throws Exception {
String vidAsKey = row.getString(0);
String[] filedAsValues = {row.getString(1), row.getString(2) == null || "null".equals(row.getString(2)) || "".equals(row.getString(2)) ? "未标注" : row.getString(2), row.getString(3), row.getString(4), row.getString(5), row.getString(6), row.getString(7), row.getString(8) == null || "null".equals(row.getString(8)) || "".equals(row.getString(8)) ? "未标注" : row.getString(8), row.getString(9), row.getString(10), row.getString(11)};
List
ls = new ArrayList<>(); ls.add(filedAsValues); return new Tuple2<>(vidAsKey, ls); } }).reduceByKey(new Function2
, List
, List
>() { //相同key的list合并成一个[["","","",""...],[],[],.... ] @Override public List
call(List
strings, List
strings2) throws Exception { List
tempList = new ArrayList<>(); tempList.addAll(strings); tempList.addAll(strings2); return tempList; } }).map(new Function
>, Row>() { @Override public Row call(Tuple2
> kv) throws Exception { String vid = kv._1(); List
vList = kv._2(); Map
allStartProvinceCountMap = new HashMap<>(); //每个起点省计数 Map
allStartCityCountMap = new HashMap<>(); //每个起点市计数 Map
allStartFenceCountMap = new HashMap<>(); //每个起点市计数 Map
allEndProvinceCountMap = new HashMap<>(); //每个起点市计数 Map
allEndCityCountMap = new HashMap<>(); //每个起点市计数 Map
allEndFenceCountMap = new HashMap<>(); //每个起点市计数 int startProCount; int startCityCount; int startFenceCount; int endProCount; int endCityCount; int endFenceCount; for (String[] rowValues : vList) { //rowValuesExcept : [s_fence_id,s_fence_name,s_time,s_province_name,s_city_name,s_country_name,e_fence_id,e_fence_name, // e_province_name,e_city_name,e_country_name] 6 String s_province_name = rowValues[3]; String s_city_name = rowValues[4]; String s_fence_name = rowValues[1] + "-" + rowValues[0] + "-" + rowValues[3] + "-" + rowValues[4] + "-" + rowValues[5]; String e_province_name = rowValues[8]; String e_city_name = rowValues[9]; String e_fence_name = rowValues[7] + "-" + rowValues[6] + "-" + rowValues[8] + "-" + rowValues[9] + "-" + rowValues[10]; if (allStartProvinceCountMap.get(s_province_name) == null) { //改省没有被计数 startProCount = 1; allStartProvinceCountMap.put(s_province_name, startProCount); } else { startProCount = allStartProvinceCountMap.get(s_province_name); startProCount += 1; allStartProvinceCountMap.put(s_province_name, startProCount); } // 统计起点市 if (allStartCityCountMap.get(s_city_name) == null) { //改省没有被计数 startCityCount = 1; allStartCityCountMap.put(s_city_name, startCityCount); } else { startCityCount = allStartCityCountMap.get(s_city_name); startCityCount += 1; allStartCityCountMap.put(s_city_name, startCityCount); } //统计起点企业 if (allStartFenceCountMap.get(s_fence_name) == null) { startFenceCount = 1; allStartFenceCountMap.put(s_fence_name, startFenceCount); } else { startFenceCount = allStartFenceCountMap.get(s_fence_name); startFenceCount += 1; allStartFenceCountMap.put(s_fence_name, startFenceCount); } // ****************统计终点省******************** if (allEndProvinceCountMap.get(e_province_name) == null) { endProCount = 1; allEndProvinceCountMap.put(e_province_name, endProCount); } else { endProCount = allEndProvinceCountMap.get(e_province_name); endProCount += 1; allEndProvinceCountMap.put(e_province_name, endProCount); } // ****************统计终点市******************** if (allEndCityCountMap.get(e_city_name) == null) { endCityCount = 1; allEndCityCountMap.put(e_city_name, endCityCount); } else { endCityCount = allEndCityCountMap.get(e_city_name); endCityCount += 1; allEndCityCountMap.put(e_city_name, endCityCount); } // ****************统计终点市******************** if (allEndFenceCountMap.get(e_fence_name) == null) { endFenceCount = 1; allEndFenceCountMap.put(e_fence_name, endFenceCount); } else { endFenceCount = allEndFenceCountMap.get(e_fence_name); endFenceCount += 1; allEndFenceCountMap.put(e_fence_name, endFenceCount); } } String s_proResult = sortMapToStringAppend(allStartProvinceCountMap); String s_cityResult = sortMapToStringAppend(allStartCityCountMap); String s_fenceResult = sortMapToStringAppend(allStartFenceCountMap); String e_proResult = sortMapToStringAppend(allEndProvinceCountMap); String e_cityResult = sortMapToStringAppend(allEndCityCountMap); String e_fenceResult = sortMapToStringAppend(allEndFenceCountMap); return RowFactory.create( vid, s_proResult, s_cityResult, s_fenceResult, e_proResult, e_cityResult, e_fenceResult ); } }); /** * 动态构建DataFrame中的元数据,一般来说这里的字段可以来源自字符串,也可以来源于外部数据库 */ List
asList = Arrays.asList(//这里字段顺序一定要和上边对应起来 DataTypes.createStructField("vid", DataTypes.StringType, true), DataTypes.createStructField("s_pro_count", DataTypes.StringType, true), DataTypes.createStructField("s_city_count", DataTypes.StringType, true), DataTypes.createStructField("s_fence_name_count", DataTypes.StringType, true), DataTypes.createStructField("e_pro_count", DataTypes.StringType, true), DataTypes.createStructField("e_city_count", DataTypes.StringType, true), DataTypes.createStructField("e_fence_name_count", DataTypes.StringType, true) ); StructType schema = DataTypes.createStructType(asList); sparkSession.createDataFrame(reslutRdd, schema).registerTempTable("car_fence_300_temp"); sparkSession.sql("create table ads_chpp_dev.car_count_test_10 like car_fence_300_temp"); sparkSession.sql("insert into ads_chpp_dev.car_count_test_10 select * from car_fence_300_temp"); }
package com.dt.spark.SparkApps.sql;
import java.io.Serializable;
//因为底层是反射,要求JavaBean是public
//此时需要序列化,因为是分布式方式。
public class Person implements Serializable{
private static final long serialVersionUID = 1L;
private int id;
private String name;
private int age; public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
@Override
public String toString() {
return "Person [id=" + id + ", name=" + name + ", age=" + age + "]";
}
}
scala实现
package com.dataguru.xzl.two.com.dt
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}
/**
* Created by xzl on 2016/3/16.
*/
object RDD2DataFrameByReflection {
//case class 要放在main方法外面
case class Person(id: Int, name: String, age: Int)
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local").setAppName("RDD2DataFrameByReflection")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
// 导入语句,可以隐式地将RDD转化成DataFrame
import sqlContext.implicits._
val lines = sc.textFile("d://persons.txt")
val df = lines.map(_.split(",")).map { splited =>
Person(splited(0).trim().toInt, splited(1), splited(2).trim().toInt)
}.toDF() //toDF("colName","",...)
df.registerTempTable("persons")
val bigDatas = sqlContext.sql("select * from persons where age >= 6")
val personList = bigDatas.javaRDD.collect()
for (p