1 一维采样定理
采样频率和信号频率的关系
2 二维采样定理(Nyguist准则)
1/ Δ \Delta Δx,1/ Δ \Delta Δy/2倍的图像函数上线频带
3 打印机、扫描仪分辨率
dpi(display pixels / inch):每英寸显示的线数
dpi的数值越大,图像越清晰
4 像素深度
指存储每个像素所用的位数,它也用来度量图像的分辨率
5 像素间的基本关系
5.1 像素的邻域与邻接
5.1.1 邻域
在一定意义下,与某一像素相邻的像素的集合,反映像素见的空间关系
eg.比如3*3邻域、5*5邻域
4邻域,表示为 N 4 ( p ) N_4(p) N4(p),为其上下左右四个像素点,如p(x,y): (x+1,y);(x-1,y); (x,y+1); (x,y-1);每个像素与p(x,y)距离1
对角邻域,表示为 N D ( p ) N_D(p) ND(p) ,如p(x,y): (x-1,y-1);(x+1,y+1);(x-1,y+1);(x+1,y-1);每个像素与p(x,y)距离为 2 \sqrt{2} 2
8邻域,表示为 N 8 ( p ) N_8(p) N8(p),即为4邻域+对角邻域, N 8 ( p ) = N 4 ( p ) + N D ( p ) N_8(p)=N_4(p)+N_D(p) N8(p)=N4(p)+ND(p),或也可称为3*3邻域
5.1.2 像素邻接
空间上相邻,且像素灰度值相似
邻接:
(1)是否接触(领域关系)
(2)灰度值是否满足某个特定的相似准V(V为人为指定)
V:(1)灰度值相等(2)在同一个灰度集合中
4-邻接:(条件1:)2个像素p和q在V中取值 (条件2:)2个像素属于 N 4 ( p ) N_4(p) N4(p)关系
8-邻接:(条件1:)2个像素p和q在V中取值 (条件2:)2个像素属于 N 8 ( p ) N_8(p) N8(p)关系
m-邻接(混合邻接)
2个像素p和q在V中取值,且满足下列条件之一
(1)q在 N 4 ( p ) N_4(p) N4(p)中
(2)q在 N D ( p ) N_D(p) ND(p)中且集合 N 4 ( p ) ∩ N 4 ( q ) N_4(p)\cap N_4(q) N4(p)∩N4(q)是空集
经过这种限制,就不会既存在4邻接通路又存在8邻接通路
实质:当像素间同时存在4-邻接和8-邻接时,优先采用4-邻接,屏蔽两个和同一像素间存在4-邻接的像素之间的8-邻接关系(换句话说,原来两个像素之间既存在4-邻接,又存在8-邻接,采用m-邻接,消除二义性,优先考虑4-邻接,消除回路)
5.2 连通性
反映两个像素间的空间关系
5.2.1 通路
像素p(x,y)到像素q(s,t)的一条通路,由一系列具有坐标 ( x 0 , y 0 ) , ( x 1 , y 1 ) , … , ( x i , y i ) , … , ( x n , y n ) (x_0,y_0),(x_1,y_1),\dots,(x_i,y_i),\dots,(x_n,y_n) (x0,y0),(x1,y1),…,(xi,yi),…,(xn,yn)的独立像素组成 ,其中, ( x , y ) = ( x 0 , y 0 ) , ( x n , y n ) = ( s , t ) (x,y)=(x_0,y_0),(x_n,y_n)=(s,t) (x,y)=(x0,y0),(xn,yn)=(s,t),且 ( x i , y i ) (x_i,y_i) (xi,yi)与 ( x i − 1 , y i − 1 ) (x_{i-1},y_{i-1}) (xi−1,yi−1)邻接, 1 ≤ i ≤ n 1\le i \le n 1≤i≤n,n为通路长度(通路种类:4-通路,8-通路,m-通路)
5.2.2 连通
连通:通路上的所有像素灰度值满足相似准则: ( x i , y i ) (x_i,y_i) (xi,yi)与 ( x i − 1 , y i − 1 ) (x_{i-1},y_{i-1}) (xi−1,yi−1)邻接
种类:4-连通,8-连通,m-连通
5.3 距离度量
距离:
定义:对于像素 p ( x , y ) , q ( s , t ) p(x,y),q(s,t) p(x,y),q(s,t)和 z ( u , v ) z(u,v) z(u,v), if:
( a ) (a) (a) D ( p , q ) ≥ 0 D(p,q)\ge 0 D(p,q)≥0 ,[D(p,q)=0, if and only if p=q]
( b ) (b) (b) D ( p , q ) = D ( q , p ) D(p,q)=D(q,p) D(p,q)=D(q,p)
( c ) (c) (c) D ( p , z ) ≤ D ( p , q ) + D ( q , z ) D(p,z) \le D(p,q) + D(q,z) D(p,z)≤D(p,q)+D(q,z)
则D是距离函数或度量
欧式距离 D e D_e De:
对于像素 p ( x , y ) , q ( s , t ) p(x,y),q(s,t) p(x,y),q(s,t),
D e ( p , q ) = [ ( x − s ) 2 + ( y − t ) 2 ] 1 2 D_e(p,q)=[(x-s)^2+(y-t)^2]^{\frac{1}{2}} De(p,q)=[(x−s)2+(y−t)2]21
D 4 D_4 D4距离(城市距离)
对于像素 p ( x , y ) , q ( s , t ) p(x,y),q(s,t) p(x,y),q(s,t), D 4 ( p , q ) = ∣ x − s ∣ + ∣ y − t ∣ D_4(p,q) = |x-s| + |y-t| D4(p,q)=∣x−s∣+∣y−t∣
据点(x,y)的
D
4
D_4
D4距离小于或等于某一值r的像素形成一个中心在(x,y)的菱形
2
2
1
2
2
1
0
1
2
2
1
2
2
\begin{matrix} &&2&&\\ &2&1&2&\\ 2&1&0&1&2\\ &2&1&2&\\ &&2&& \end{matrix}
2212210122122
6 图像文件格式
6.1 数字图像类型
静态图像可分为矢量(Vector)图和位图(Bitmap)
矢量图:
用数学公式描述的图像,用一系列绘图指令表示图像
图像中每个图形都用一个完整的数学公式描述,称为一个对象
优点:a.文件数据量很小 b.图像质量与分辨率无关
缺点:a.不易制作色调丰富或色彩变化太多的图像 b.绘制出来的图像不是很逼真 c.不易在不同的软件剪交换文件
位图:
通过像素点表示图像,每个像素具有颜色属性和位置数型
优点:a.显示速度快 b.真实世界的图像可以通过扫描仪、数码相机、摄像机等设备方便的转化为点位图
缺点:a.存储和传输是数据量比较大 b.缩放、旋转是算法复杂且容易失真
6.2 图像文件格式
6.2.1 BMP图像文件格式
bmp文件大体上分成4个部分
位图文件头 BITMAPFILEHEADER |
---|
位图信息头 BITMAPINFOHEADER |
调色板 Palette:将需要的颜色以列表的形式呈现,为图中对应坐标的值为颜色的序号 |
实际的位图数据 ImageDate |
注意:BMP文件的数据存放是从下到上,从左到右的