解题思路:
根据点P与三角形其中两点所形成的三角形面积之和与三角形ABC面积进行比较,如果相等则点P在三角形内,不相等则不在三角形ABC内。
解题步骤:
一、根据给定的三点坐标计算三角形的面积;
二、将点P所形成的的三角形面积之和与三角形ABC进行比较,相等则说明点P在三角形ABC内,反之则不在三角形ABC内。
步骤分析:
根据给定的三点坐标计算三角形的面积
如上图所示,给定abc三点在坐标系中围成一个三角形
三角形abc的面积可以用公式s = 1/2 * (ac * bd) = 1/2 * (ac * ab * sinΘ)
ac和ab长度相当于向量ac和ab的模,为了方便表达,向量ac(c1 - a1, c2 - a2)记为ac(ac1, ac2),向量ab(b1 - a1, b2 - a2)记为ab(ab1, ab2)。
那么上面的公式就可以转换为
注:4式转5式中的向量的乘积相当于两个向量之间x与y坐标相乘的推导如下
计算向量ab和向量ac的乘积,向量ab(x1, y1),向量ac(x2, y2)。现在假设两个x和y的单位向量i(1,0)&#x
给定三角形ABC和一点P(x, y),判断P是否在三角形内
最新推荐文章于 2024-06-27 11:08:56 发布