嘿,记得给“机器学习与推荐算法”添加星标
序列化推荐系统通过探索用户的交互顺序,以此基于他们最近所做过的事情的上下文预测他们的下一个动作。之前有马尔可夫链以及循环神经网络RNN和Self Attention可以解决类似的问题。
但是大多数序列化推荐模型都有一个简化的假设,即这些模型都将交互历史视为一个有顺序的序列,没有考虑这个序列中交互物品之间的时间间隔(即只是建模了时间顺序没有考虑实际上的时间戳)。
本文提出的模型叫TiSASRec (Time Interval Aware Self-Attention for Sequential Recommendation), 不仅考虑物品的绝对位置,还考虑序列中物品之间的时间间隔。
研究对象

对于一篇论文,最重要的是去理解为什么文章使用了这个方法,有什么意义或作用。以下是我自己的理解:
1.首先这个文章定位是在self-attention机制上。得说清楚self-attention的研究的对象和解决的问题。
说self-attention一定要谈到SASRec[1]这个文章,该文章是2018年发表在ICDM会议上的论文,主要是针对的是召回的工作,提出SASRec序列推荐模型。作者受到Transformer启发,采用自注意力机制来对用户的历史行为信息建模,提取更为有价值的信息。最后将得到的信息分别与所有的物品embedding内容做内积,根据相关性的大小排序、筛选,得到Top-k个推荐。
Self-attention的意义:对于下一次的物品推荐,依赖于用户行为序列的各个物品的权重是不同的,这与“推荐场景有关”(context上下文),因为当用户物品交互较少时:在一个稀疏数据集下,用户行为较少,行为相隔时间可能相差几天,甚至几个月,那么“此时相近时间的历史物品信息表现得更为重要”;相反,当用户物品交互频繁时:在一个密集型数据集下,用户行为多,例如在电商场景下,那么“相近的物品信息就不是非常重要”。例如,对于某个用户,他在电商场景的一个Session中,行为是:手机--电脑--衣服---鼠标---裤子,那下一个用户感兴趣的是电子产品、服装都有可能,上述历史行为都很重要。即,不同环境下(数据集),模型的self-attention机制关注的重点是不同的(这就是这个图的目的)。