多视图多示例多标签的协同矩阵分解

该论文提出了一种名为M3Lcmf的多视图多示例多标签学习方法,通过协同矩阵分解构建异质网络,考虑了包、实例和标签之间的复杂关系,提高了预测性能。实验表明,M3Lcmf在包级和实例级预测上优于其他MIML方法,验证了利用多实体关系的优势。
摘要由CSDN通过智能技术生成

嘿,记得给“机器学习与推荐算法”添加星标


题目: Multi-View Multi-Instance Multi-Label Learning based on Collaborative Matrix Factorization

会议: AAAI 2019

论文: https://arxiv.org/pdf/1905.05061.pdf

1 Motivation

1、现有的M3L方法仅仅探索了部分实体(包,实例和标签)之间的关系,而这些实体之间的关系可以给M3L方法提供丰富的上下文信息,因此,现有的M3L方法性能次优;

2、大部分的MIML算法仅关注单视图数据,但是,在实际应用中,通常可以通过不同的视图来表示多实例多标签对象。

2 Related work

由于包之间以及实例之间存在多种类型的关系,与最近大量研究的MIML任务相比,从多视图包中学习更加困难和挑战。当前已有不少研究工作致力于解决这样一种挑战。如表1所示:

尽管这些方法在努力解决多视图MIML学习问题,但是这些方法仅考虑了包之间和实例之间有限的关系类型。

3 Methodology

所提模型主要包括两部分,一部分是异质网络的构建,另一部分是协同关系矩阵分解。

3.1 Heterogeneous Network Construction

1、construct a subnetwork of instances for each feature view

利用高斯热核为每个特征视图中的实例构建子网,其中 为第v个视图中m个实例的平均欧氏距离。

2、construct a bag subnetwork for each feature view

利用豪斯多夫距离为每个试图中的包构建子网

3、construct a subnetwork of labels

利用cosine相似度来量化标签相关性,其中 为两个标签, 是标签c在所有包中的分布。

以上三部分便构建完了实例-实例,包-包,标签-标签的子网,另外,通过数据集的信息,作者继续构建包-实例,包-标签,实例-标签之间的数据矩阵。

4、The bag-instance inter-relational data matrix

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值