嘿,记得给“机器学习与推荐算法”添加星标
题目: Multi-View Multi-Instance Multi-Label Learning based on Collaborative Matrix Factorization
会议: AAAI 2019
论文: https://arxiv.org/pdf/1905.05061.pdf
1 Motivation
1、现有的M3L方法仅仅探索了部分实体(包,实例和标签)之间的关系,而这些实体之间的关系可以给M3L方法提供丰富的上下文信息,因此,现有的M3L方法性能次优;
2、大部分的MIML算法仅关注单视图数据,但是,在实际应用中,通常可以通过不同的视图来表示多实例多标签对象。
2 Related work
由于包之间以及实例之间存在多种类型的关系,与最近大量研究的MIML任务相比,从多视图包中学习更加困难和挑战。当前已有不少研究工作致力于解决这样一种挑战。如表1所示:
尽管这些方法在努力解决多视图MIML学习问题,但是这些方法仅考虑了包之间和实例之间有限的关系类型。
3 Methodology
所提模型主要包括两部分,一部分是异质网络的构建,另一部分是协同关系矩阵分解。
3.1 Heterogeneous Network Construction
1、construct a subnetwork of instances for each feature view
利用高斯热核为每个特征视图中的实例构建子网,其中 为第v个视图中m个实例的平均欧氏距离。
2、construct a bag subnetwork for each feature view
利用豪斯多夫距离为每个试图中的包构建子网
3、construct a subnetwork of labels
利用cosine相似度来量化标签相关性,其中 和 为两个标签, 是标签c在所有包中的分布。
以上三部分便构建完了实例-实例,包-包,标签-标签的子网,另外,通过数据集的信息,作者继续构建包-实例,包-标签,实例-标签之间的数据矩阵。
4、The bag-instance inter-relational data matrix