机器学习 day13无监督学习

本文介绍了无监督学习中的K-Means算法,详细阐述了算法的工作原理、优化目标以及如何进行随机初始化。讨论了K-Means在选择聚类数量上的挑战,提出了肘部法则作为一种可能的解决方案,但强调实际应用中应考虑业务目标来确定最佳的K值。
摘要由CSDN通过智能技术生成

01 无监督学习

  • 无监督学习:训练集没有标签,也就是图上的点没有任何标签信息。我们要将这系列无标签的数据,输入到算法中,然后我们要让算法找到一些隐含在数据中的结构,这个图中数据集中的点两组分开的簇,这种能够找到这些簇的算法叫做聚类算法。

在这里插入图片描述

02 K-Means算法

K均值算法是现在最为广泛运用的聚类算法


  • 通过K均值算法将下图分为两个簇的具体操作:
    1. 随机生成两点(聚类中心),选取两点的原因是想将数据聚成两类。
  • K均值算法是个迭代算法,可以做两件事:簇分配和移动聚类中心。
  • K均值算法每次内循环的第一步是要进行簇分配,观察图中的绿点,是接近哪个聚类中心,距离哪个近就分配给哪个。

在这里插入图片描述

  • 根据离红色或者蓝色聚类中心的远近,将每个点染成红色或者蓝色。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值