计算机考研专题数学之多元函数微分学(1)

这篇博客深入探讨了多元函数微分学的重要概念,包括连续性、可偏导性和可微性的证明方法。通过多个例题,阐述了如何求偏导和微分,同时讲解了无条件极值和条件极值的求解策略。博主邀请读者一起思考并分享解题思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、几个重要知识点

1.连续

连续主要证明极限值等于函数值,对于分段函数来说要先证明左右极限,一个不动,有一个向正负两个方向靠近,如果左右极限项等且等于极限值就是连续的
在这里插入图片描述

2.可偏导

可偏导分为对x和对y的可偏导,求对其中一个的可偏导,另外一个设置不动,
在这里插入图片描述
在这里插入图片描述

3.可微

可微通常写为dz,如果函数可微,则可以写为
在这里插入图片描述
在确定了可偏导之后,如何确定可微?
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值