AI人工智能大模型讲师叶梓简历及《基于人工智能的内容生成(AIGC)理论与实践》培训提纲

本文介绍上海交通大学计算机博士叶梓在人工智能领域的丰富经验,包括数据挖掘、机器学习等技术的研究和应用,以及ChatGPT模型的实践案例分析。课程覆盖Transformer、自注意力机制、GPT系列发展及应用领域,适合对ChatGPT感兴趣的学习者入门和进阶。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

叶梓,上海交通大学计算机专业博士毕业,高级工程师。主研方向:数据挖掘、机器学习、人工智能。历任国内知名上市IT企业的AI技术总监、资深技术专家,市级行业大数据平台技术负责人。

长期负责城市信息化智能平台的建设工作,开展行业数据的智能化应用研发工作,牵头多个省级、市级行业智能化信息系统的建设,主持设计并搭建多个省级、市级行业大数据平台。参与国家级人工智能课题,牵头上海市级人工智能示范应用课题研究。

带领团队在相关行业领域研发多款人工智能创新产品,成功落地多项大数据、人工智能前沿项目,其中信息化智能平台项目曾荣获:“上海市信息技术优秀应用成果奖”。带领团队在参加国际NLP算法大赛,获得Top1%的成绩。参与国家级、省级大数据技术标准的制定,曾获省部级以上的科技创新一等奖。

【课程简介】

本课程介绍了chatGPT相关模型的具体案例实践,通过实操更好的掌握chatGPT的概念与应用场景,可以作为chatGPT领域学习者的入门到进阶级课程。

【课程时长】

1天(6小时/天)

【课程对象】

理工科本科及以上,且至少了解一门编程语言。

【课程大纲】(培训内容可根据客户需求调整)

时间

内容

案例实践与练习

Day1上午

Transformer

1、你需要的仅仅是“注意力”

2、Transformer中的block

3、自注意力机制

4、多头注意力

5、位置编码(抛弃RNN)

6、Batch Norm与Layer Norm

7、解码器的构造

初代GPT

  1. “独角兽”的威力
  2. GPT的内部架构
  3. 基于Transformer的改造
  4. 自注意力机制的改进

Day1下午

GPT的演进

1、GPT2

2、GPT3

3、InstructGPT

chatGPT的原理实践

1、指示学习(Instruct Learning)

2、相关数据集

3、有监督微调(SFT)

4、从人类反馈中RL的思路

5、奖励建模(RM)

6、PPO

7、chatGPT的应用领域

8、chatGPT引发的讨论

chatGPT的国内替代品

1、问东风AI

2、其他替代品

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能大模型讲师培训咨询叶梓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值