人工智能咨询培训老师叶梓 转载标明出处
随着大型语言模型(LLMs)在各个领域的广泛应用,其训练和部署的效率问题日益凸显。传统的子词标记化方法,如Byte Pair Encoding (BPE) 或 Unigram,虽然能够在一定程度上压缩文本,但其压缩率通常只有4倍左右。LLMs在处理文本时,需要消耗大量的计算资源来处理这些标记。而且这些方法在处理长文本时,由于自注意力层的计算复杂度与序列长度的平方成正比,限制了模型能够处理的序列长度,进而影响了模型捕捉长距离依赖的能力。
本文提出的方法通过引入“等信息窗口”(Equal-Info Windows)压缩技术,显著提升了大型语言模型(LLMs)在神经压缩文本上的学习效率和效果。该技术通过将文本分割成等比特长度的块,不仅解决了传统压缩方法导致的学习障碍,还使得模型能够在更少的计算资源下处理更多的文本数据,从而提高了训练效率。由于压缩后的文本序列更短,模型在推理时需要的自回归生成步骤减少,这不仅降低了延迟,还使得模型能够更好地处理长文本,捕捉更远的依赖关系。这种方法的优势在于,它不仅提供了更高的压缩率,还保持了文本的可学习性,为LLMs的训练和部署带来了实质性的改进。
方法

Figure 1 显示了对训练大型语言模型(LLM,记为 M2)在神经压缩文本上的方法的高层次概述。这个过程分为几个关键步骤:
训练 M1 作为字节级语言模型:首先,模型 M1 被训练为一个标准的字节级语言模型。给定左侧的上下文,M1 能够为每个可能跟随的字节分配一个概率值。这个步骤是基础,因为它为后续的文本压缩提供了必要的概率信息。
使用 M1 压缩语料库文本:接着利用训练好的 M1 模型来压缩整个语料库文本。M1 为文本中的每个位置分配的概率被用作压缩算法的输入,这里使用的是算术编码(Arithmetic Coding,简称 AC)。算术编码是一种支持使用动态符号概率的压缩算法,它根据 M1 分配给文本的实时概率来压缩文本。
将压缩后的位流分块成标记:压缩后的文本被转换成位流,这个位流随后被分块成固定大小的标记,例如 8 位的块。这样,原本的文本就被转换成了一系列的标记,这些标记代表了原始文本的压缩形式。
训练 M2 在压缩文本上的模型:最后使用这些由压缩位流转换来的标记来训练 M2。M2 被训练为一个语言模型,它直接在这些压缩文本的标记上进行操作,而不是在原始的字节级文本上。就是说M2 学习的是如何处理和生成压缩文本,而不是原始文本。
这个过程的关键创新之处在于,它通过压缩来减少模型在训练和推理时需要处理的标记数量,从而提高效率。同时,它也提出了一种新的方法,让模型学习如何从压缩的表示中恢复出语言的结构和语义信息。
这种方法的优势在于,如果能够成功训练 M2,那么在处理相同数量的原始文本时,模型将需要更少的计算资源,因为压缩后的文本更短。由于压缩文本的每个标记包含了更多的原始文本信息&#x