使用LLaMA-Factory快速训练自己的专用大模型

转自:萤火架构

本文聊聊 LLama-Factory,它是一个开源框架,这里头可以找到一系列预制的组件和模板,让你不用从零开始,就能训练出自己的语言模型(微调)。不管是聊天机器人,还是文章生成器,甚至是问答系统,都能搞定。而且,LLama-Factory 还支持多种框架和数据集,这意味着你可以根据项目需求灵活选择,把精力集中在真正重要的事情上——创造价值。

使用LLama-Factory,常见的就是训练LoRA模型,增强模型在某方面的生成能力。本教程将以增强 GLM-4-9B-Chat 模型的脑筋急转弯能力为例,演示LoRA模型的微调方法。

环境准备

本地使用

LLama-Factory 的安装比较简单,大家直接看官网页面就够了:

https://github.com/hiyouga/LLaMA-Factory

云镜像

如果你本地没有一张好显卡,也不想费劲的安装,就想马上开始训练。

可以试试我的云镜像,开箱即用:https://www.haoee.com/applicationMarket/applicationDetails?appId=40&IC=XLZLpI7Q

平台注册就送一定额度,可以完成本教程的的演示示例。

镜像已经内置了几个基础模型,大都在6B-9B,单卡24G显存即可完成LoRA微调。

如果要微调更大的模型,则需要更多的显卡和显存,请在购买GPU时选择合适的显卡和数量。

已经内置的模型:Yi-1.5-9B-Chat、Qwen2-7B、meta-llama-3.1-8b-instruct、glm-4-9b-chat、chatglm3-6b

如果缺少你需要的模型,可以给我反馈。

假设你已经解决了程序运行环境问题,下边将开始讲解 LLama-Factory 的使用方法。

LLama-Factory 支持命令行和Web页面训练两种方式,为了方便入门,这篇文章以Web页面训练为例。

选择基础模型

语言:zh,因为我们要微调的是中文模型。

模型选择:GLM-4-9B-Chat

模型路径:/root/LLaMA-Factory/models/glm-4-9b-chat,默认会自动下载模型,不过速度可能比较慢,我们的镜像中已经下载好这个模型,所以直接填写路径更快。

微调方法:lora

图片

准备训练数据集

LLaMA-Factory自带了一些常用的数据集,如果你使用的数据集不在里边,可以修改 data/dataset_info.json,在其中增加自己的数据集。

这里我使用的是一个弱智吧问答数据集,数据集的格式是 alpaca,来源:https://huggingface.co/datasets/LooksJuicy/ruozhiba

图片

大家准备自己的数据的时候,也一定要按照指定的格式来。

训练参数设置

训练参数需要根据实际训练效果进行调整,这里给出一个参考设置。

图片

数据集:请根据你的需要选择,这里选择我上边定义的 ruozhiba_qa。

学习率:1e-4,设置的大点,有利于模型拟合。

计算类型:如果显卡较旧,建议计算类型选择fp16;如果显卡比较新,建议选择bf16。

梯度累计:2,有利于模型拟合。

图片

LoRA+学习率比例:16,相比LoRA,LoRA+续写效果更好。

LoRA作用模块:all表示将LoRA层挂载到模型的所有线性层上,提高拟合效果。

想要掌握如何将大模型的力量发挥到极致吗?2024年10月26日叶老师带您深入了解 Llama Factory —— 一款革命性的大模型微调工具。

留言“参加”即可来叶老师的直播间互动,1小时讲解让您轻松上手,学习如何使用 Llama Factory 微调模型。互动交流,畅谈工作中遇到的实际问题。

开始训练

点击“开始”按钮,可以在页面上看到训练进度和训练效果。

根据训练方法和训练数据的大小,训练需要的时间不定。

图片

推理测试

在“检查点路径”这里加载刚刚训练的LoRA模型,然后切换到“Chat”页签,点击“加载模型”。

测试完毕后,记得点击“卸载模型”,因为模型占用显存比较大,不释放的话,再进行别的任务可能会出错。

图片

对比训练前后的变化:

训练前:

图片

训练后:

图片

这是一个比较感性的测试,如果需要更为正式的效果评估,请使用“Evaluate & Predict” 选择合适的评测数据集进行评估。

图片

合并导出模型

有时候我们需要把模型导出来放在别的地方使用,输出一个完整的模型文件,而不是基础模型+LoRA模型。

图片

检查点路径:训练出来的LoRA模型

导出目录:设置一个服务器上的路径,新的模型会存放到这里。

最后点击“开始导出”就行了。导出完毕后,请前往服务器相关的路径中下载模型。

LLaMA-Factory 架构

最后送大家一张 LLaMA-Factory 的架构图,方便理解其原理。

图片

图片左侧:显示了 LLaMA-Factory 的架构,分为四个主要部分:LlamaBoard、Trainer、Model Loader 和 Data Worker。

  • LlamaBoard:用于参数配置和训练状态监视。

  • Trainer:负责优化和训练方法的选择,如 LoRA+、GaLoRe、Pre-train、SFT 等。

  • Model Loader:负责模型初始化、补丁、量化和适配器等功能。

  • Data Worker:负责加载、对齐、预处理和合并训练数据。

图片右侧:列出了支持的流行语言模型和大小,以及支持的训练方法。

  • 支持的语言模型和大小:LLaMA、LLaMA-2、LLaMA-3、Command-R、Mistral/Mixtral、OLMo、Phi-1.5/2、Qwen、DeepSeek (MoE)、Falcon、Gemma/CodeGemma 和 StarCoder2。

  • 支持的训练方法:全量调整、冻结调整、LoRA、QLoRA、奖励建模、PPO 训练、DPO 训练、ORPO 训练。


总体上来说,LLama-Factory 的使用还是挺顺利的,没有太多的坑。

听不如见,见不如做,自己动手,才能真正有所感悟!

<think>好的,我现在需要帮用户解决如何从LLaMA-Factory进行模型量化并导出的问题。首先,我得回想一下用户提供的引用内容,看看里面有没有相关的信息。 引用[1]提到LLaMA-Factory支持种量化方法,比如GPTQ、AQLM、AWQ等,这些都属于后训练量化方法。还提到量化导出,所以关键步骤可能在这里。引用[3]和[4]也提到了模型导出和格式转换,特别是GGUF格式,可能需要用到llama.cpp工具。 接下来,用户需要的是具体的教程和方法,所以应该分步骤说明。首先应该确定用户是否已经安装了LLaMA-Factory,可能需要先配置环境。然后,选择量化方法,比如GPTQ,因为引用里提到了这是常用的。接着,使用提供的脚本或命令进行量化,可能需要指定模型路径、数据集等参数。之后,导出模型,可能需要用export_model.py脚本,并转换格式,比如GGUF,方便后续使用。 需要注意的是,不同的量化方法可能有不同的参数设置,用户需要根据自己的需求整。例如,GPTQ需要指定比特数和组大小,AWQ可能需要校准数据。另外,导出后的模型加载和测试也是重要的一环,确保量化后的模型能正常工作。 用户可能遇到的问题包括环境配置错误、参数设置不当,或者导出格式不兼容,所以需要提醒他们注意这些方面。同时,引用[2]提到用户是初学者,可能在拉取模型时有疑问,所以需要明确说明模型路径的处理,确保用户理解如何正确输入路径。 最后,生成相关问题时要围绕量化方法、参数影响、性能比较、格式转换和常见错误处理,这些都是用户可能进一步想了解的。需要确保回答结构清晰,步骤详细,并且参考了提供的引用内容,以保持准确性和可靠性。</think>以下是基于LLaMA-Factory进行模型量化并导出的详细教程: ### 一、量化准备阶段 1. **环境配置** 确保已安装最新版LLaMA-Factory框架,推荐使用Python 3.8+环境,安装依赖: ```bash git clone https://github.com/hiyouga/LLaMA-Factory.git cd LLaMA-Factory && pip install -r requirements.txt ``` 2. **模型准备** 在`models`目录下存放预训练模型文件(如llama-7b),需包含完整的模型权重和配置文件[^2] ### 二、量化操作步骤 1. **选择量化方法** 支持GPTQ/AWQ/QLoRA等后训练量化方法。以GPTQ为例: ```bash python src/train_bash.py --quantization_bit 4 --quantization_method gptq \ --model_name_or_path ./models/llama-7b --dataset alpaca_en ``` 其中`quantization_bit`指定量化比特数(常用4/8bit),`dataset`用于校准量化参数[^1] 2. **关键参数说明** ```markdown --quantization_group_size 128 # 量化分组大小 --double_quantization # 启用双重量化 --quantization_zero_point # 使用零点量化 ``` ### 三、模型导出流程 1. **导出量化模型** 使用专用导出脚本: ```bash python src/export_model.py --model_name_or_path ./models/llama-7b \ --quantization_bit 4 --export_dir ./quant_models ``` 导出后的模型包含`*.safetensors`权重文件和量化配置文件[^3] 2. **格式转换(可选)** 如需转换为GGUF格式: ```bash python scripts/convert_to_gguf.py --input_dir ./quant_models \ --output_format gguf --output_dir ./gguf_models ``` 支持与llama.cpp等推理框架兼容[^4] ### 四、验证与使用 1. **加载量化模型** ```python from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained( "./quant_models", device_map="auto", load_in_4bit=True ) ``` 2. **性能验证** 使用`scripts/benchmark.py`测试推理速度与显存占用,量化后显存消耗应降低40-70%
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值