人工智能咨询培训老师叶梓 转载标明出处
在自然语言处理(NLP)中,确保模型生成答案的可验证性是一个重要挑战。特别是在检索增强型生成(RAG)用于问答(QA)领域时,如何验证模型答案是否忠实于检索到的来源是一个关键问题。近期一种名为自引用提示的方法被提出,以使大型语言模型(LLMs)在生成答案的同时生成对支持文档的引用。然而,自引用的LLMs经常难以匹配所需格式,引用不存在的来源,并且未能忠实反映LLMs在生成过程中对上下文的使用。针对这一问题,荷兰格罗宁根大学和阿姆斯特丹大学的研究者们提出了一种名为MIRAGE(Model Internals-based RAG Explanations)的新方法。
想要掌握如何将大模型的力量发挥到极致吗?叶老师带您深入了解 Llama Factory —— 一款革命性的大模型微调工具(限时免费)。
1小时实战课程,您将学习到如何轻松上手并有效利用 Llama Factory 来微调您的模型,以发挥其最大潜力。
CSDN教学平台录播地址:https://edu.csdn.net/course/detail/39987
方法
MIRAGE是一种插件式方法,利用模型内部信息来忠实地归属RAG应用中的答案。该方法首先通过测量输入上下文引起的语言模型预测分布的变化来识别对上下文敏感的答案标记。然后,它使用基于梯度的显著性或其他特征归属技术,将这种变化归因于上下文中的具体影响标记。MIRAGE通过将依赖上下文的生成句子与有助于其预测的检索文档匹配,并将结果对转换为标准答案归属(AA)格式的引用,从而适应RAG设置。
图1展示了MIRAGE模型内部答案归因框架的工作流程。
-
检测上下文敏感答案片段:MIRAGE首先识别出在生成的答案中哪些部分(答案片段)是受输入上下文影响的,这些片段用彩色表示,意味着它们与检索到的文档有直接关联。
-
匹配上下文线索:接着,MIRAGE将这些彩色的、上下文敏感的答案片段与检索文档中的相关线索进行匹配。这些线索是文档中影响答案生成的关键信息。
-
评估答案的