题目: 输出1-n个整数的全排列
思路:
1、设定数组P存放当前的排列;设定散列数组hashTable,其中hashTable[x]当整数x已经在数组p时为true。
2、现在按顺序往p的1-n位中填入数字。不妨假设当前已经填好了p[1]~p[index-1],正准备填p[index]。显然需要枚举1~n,如果当前枚举数字x还没有在p[1]~p[index-1]中(即hashTable[x]==false),那么就将它填入p[index],同时将hashTable[x]置为true,然后去处理P的第index+1位(即进行递归);而当递归完成时再将hashTable[x]还原为false,以便让p[index]填下一个数字。
3、递归的边界是当index==n-1时,说明p的第1~n位都已经填好,此时可以将数组p输出。
代码(3的全排列):
#include<stdio.h>
int n,p[10],hashtable[10]={false};
void generatep(int index){
if(index==n+1) { //边界
for(int i=1;i<=n;i++){
printf("%d ",p[i]);
}
printf("\n");
return;
}
for(int x=1;x<=n;x++){ //枚举1-n,试图将x填入p[index]
if(hashtable[x]==false){ //如果x不在p[1]-p[index]中
p[index]=x; //将x填入到p[index]位置
hashtable[x]=true; //进行标记
generatep(index+1); //处理后续的index+1
hashtable[x]=false; //处理完 p[index]为x的子问题后 ,对hashtable复原
}
}
}
int main()
{
n=3; //输出3的全排列
generatep(1); //从P(1)开始填入
return 0;
}