从递归的角度考虑,如果把问题描述成“输出1~n这n个整数的全排列”,那么它就可以被分为若干个子问题:“输出以1开头的全排列”,“输出以2开头的全排列”。。。“输出以n开头的全排列”。于是不妨设定一个数组P,用来存放当前的排列;再设定一个散列数组hashTable,其中hashTable[x]当整数x已经在数组P中时为true。
现在按顺序往P的第1位到第n位中填入数字。不妨假设当前已经填好了P[1]~P[index-1],正准备填P[index]。显然需要枚举1~n,如果当前枚举的数字x还没有在P[1]~P[index-1]中,那么就把它填入P[index],同时将hashTable[x]置为true,然后去处理P的第index+1位(即进行递归);而当递归完成时,再将hashTable[x]还原为false,以便让P[index]填下一个数字。
#include<cstdio>
#include<stdlib.h>
const int maxn = 11;
//P为当前排列,hashTable记录整数x是否已经在P中
int n, P[maxn], hashTable[maxn] = {false};
//当前处理排列的第index号位
void generateP(int index){
if(index == n+1){ //递归边界,已经处理完排列的1~n位
for(int i = 1; i <= n; i++){
printf("%d", P[i]);//输出当前排列
}
printf("\n");
return;
}
for(int x = 1; x <= n; x++){//枚举1~n,试图将x填入P[index]
if(hashTable[x] == false){//如果x不在P[0]~P[index-1]中
P[index] = x; //令P的第index位为x,即把x加入当前排列
hashTable[x] = true; //记x已在P中
generateP(index+1); //处理排列的第index+1号位
hashTable[x] = false;//已处理完P[index]为x的子问题,还原状态
}
}
}
int main(){
n = 3; //欲输出1~3的全排列
generateP(1);//从P[1]开始填
system("pause");
return 0;
}
进行递归);而当递归完成时,再将hashTable[x]还原为false,以便让P[index]填下一个数字。