Doris vs ClickHouse:深入对比MPP数据库聚合操作的核心区别

Doris vs ClickHouse:深入对比 MPP 数据库聚合操作的核心区别

在大数据实时分析领域,Doris 和 ClickHouse 作为主流的 MPP 数据库,其聚合模型的设计理念直接影响着开发效率与查询性能。今天,我就来跟大家深入剖析二者的核心差异,让大家在实战中能够有的放矢地选型,避免踩坑。

一、核心差异对比

1.1 数据模型设计差异

Doris Aggregate 模型

  • 核心机制 :通过 AGGREGATE KEY 定义聚合维度,写入时自动合并相同 Key 的数据。这意味着 Doris 在数据写入的那一刻,就已经帮你把聚合工作做好了,省去了后期查询时的大量计算开销。
  • 聚合方式 :预置 SUM/MAX/MIN/REPLACE 等函数,存储层直接保存聚合结果。例如,你要统计用户的总消费金额,Doris 会在数据存储时就把同一用户的所有消费金额加总起来,后续查询直接拿结果就好,效率极高。

ClickHouse AggregatingMergeTree

  • 核心机制 :依赖 MergeTree 引擎的异步合并,需显式定义物化视图或 AggregateFunction 字段。ClickHouse 不会像 Doris 那样在写入时就把数据聚合好,而是先存储原始数据,等后台异步合并的时候才进行聚合操作。
  • 聚合方式 :使用 - State/-Merge 函数组合实现多级聚合,需手动触发合并或查询时指定 FINAL。这就要求使用者对聚合函数有更深入的理解,并且在查询的时候要记得指定 FINAL 才能拿到最终的聚合结果,否则可能会得到中间状态的数据,增加了使用的复杂度。

1.2 聚合时机与一致性

维度DorisClickHouse
聚合触发时机写入时立即聚合异步合并时聚合
数据一致性强一致(查询即最新)最终一致(可能存在中间状态)
一致性保证方案内置事务机制需 SELECT … FINAL 或手动合并

Doris 的强一致性是它的一大亮点。当你写入数据后,马上查询就能得到最新的、聚合好的结果,这在实时性要求高的场景下,比如实时大屏展示、交易报表统计等,非常关键。而 ClickHouse 由于是异步合并,查询时如果没有指定 FINAL,可能会得到不是最新的聚合数据,数据一致性相对较弱。

1.3 使用复杂度对比

Doris

  • 建表时声明 AGGREGATE KEY,查询语法与标准 SQL 一致。比如 SELECT user_id, SUM(cost) FROM tbl GROUP BY user_id; 这种简洁直观的语法,对于熟悉 SQL 的开发者来说,上手难度低,开发效率高。

ClickHouse

  • 需手动创建物化视图,配合 AggregateFunction 类型字段。查询时还需调用 sumMerge 等函数,如 SELECT user_id, sumMerge(score) FROM mv GROUP BY user_id; 这一系列操作下来,比 Doris 要复杂不少,对开发人员的技术要求也更高。

1.4 分布式处理能力

Doris

  • 原生支持自动分片和负载均衡。FE 节点统一调度查询,BE 节点并行计算。Doris 在分布式处理方面,基本做到了 “开箱即用”,你不需要过多地去关心分片、负载均衡这些底层细节,它自己就能把数据均匀地分片存储,并且在查询时高效地并行计算。

ClickHouse

  • 依赖分片键手动分片,跨节点查询需通过分布式表协调。本地聚合优先,分布式聚合性能依赖网络带宽。在 ClickHouse 中,分片策略需要你根据业务场景自己来定,并且在做分布式查询的时候,性能很大程度上受到网络带宽的影响,网络不稳定或者带宽不足的话,分布式聚合的性能就会大打折扣。

1.5 适用场景总结

场景Doris AggregateClickHouse AggregatingMergeTree
实时聚合需求✅ 写入即聚合,适合高频写入 + 实时查询❌ 依赖合并周期,延迟较高
复杂聚合逻辑✅ 内置多种聚合函数,SQL 简单✅ 支持更灵活的自定义聚合,但需复杂配置
运维复杂度✅ 自动分片、负载均衡,运维简单❌ 需手动管理分片和副本
数据一致性要求✅ 强一致❌ 最终一致,需额外处理

Doris 更适合那些对实时性要求极高,需要快速写入数据并且马上能查询到聚合结果的场景,比如实时监控、实时数据看板等;而 ClickHouse 则在能够接受一定延迟、对聚合逻辑有复杂自定义需求、数据量特别大的离线分析场景中,比如海量日志分析、用户行为的深度挖掘等方面,有其优势。

二、建表示例解析

2.1 Doris 聚合表

CREATE TABLE example_tbl_agg1 (
  `user_id` LARGEINT NOT NULL,
  `date` DATE NOT NULL,
  `city` VARCHAR(20),
  `age` SMALLINT,
  `sex` TINYINT,
  `last_visit_date` DATETIME REPLACE DEFAULT "1970-01-01 00:00:00",
  `cost` BIGINT SUM DEFAULT "0",
  `max_dwell_time` INT MAX DEFAULT "0",
  `min_dwell_time` INT MIN DEFAULT "99999"
)
AGGREGATE KEY(`user_id`, `date`, `city`, `age`, `sex`)
DISTRIBUTED BY HASH(`user_id`) BUCKETS 10;

特点:

  • 维度列(Key)唯一性约束,指标列(Value)自动聚合。这保证了数据在聚合维度上的唯一性,并且指标列会按照指定的聚合函数自动计算,无需人工干预。
  • 数据写入后立即可查最新结果,完全满足实时性需求。

2.2 ClickHouse 物化视图方案

-- 原始表
CREATE TABLE user_city_record (
  `id` UUID,
  user_id String,
  city_id String,
  score Float64,
  created_time DateTime
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(created_time)
ORDER BY (user_id, city_id);

-- 物化视图(聚合逻辑)
CREATE MATERIALIZED VIEW user_city_count
ENGINE = AggregatingMergeTree()
ORDER BY (user_id, city_id)
POPULATE
AS 
SELECT 
  user_id,
  city_id,
  sumState(score) AS score
FROM user_city_record
GROUP BY user_id, city_id;

-- 查询视图
CREATE VIEW user_city_view AS 
SELECT 
  user_id AS id,
  city_id,
  sumMerge(score) AS score
FROM user_city_count
GROUP BY id, city_id;

特点:

  • 通过 sumState 存储中间状态,sumMerge 合并结果。在查询的时候,必须用 sumMerge 来把中间状态的数据合并成最终的聚合结果,否则得到的只是中间状态,这一点需要使用者特别注意。

三、总结与建议

选型 Doris :如果你的业务场景对实时性要求极高,需要数据写入后马上能查询到最新的聚合结果,并且希望开发过程简单、运维成本低,那么 Doris 是个不错的选择。比如实时大屏展示、交易报表统计等场景,Doris 都能很好地胜任。

选型 ClickHouse :在你的业务场景中,数据量极大,对聚合逻辑有复杂的自定义需求,并且可以接受一定的延迟,那么 ClickHouse 更适合你。例如海量日志分析、用户行为的深度挖掘等,ClickHouse 能发挥其高性能的优势。

以上就是我今天跟大家分享的 Doris 和 ClickHouse 聚合操作对比的全部内容,希望大家能从中获得有价值的信息,帮助到大家在实际项目中做出更合适的选型。如果你觉得这篇文章对你有帮助,别忘了点赞、评论和转发哦,你的支持是我持续创作的动力!

下篇我会跟大家分享《Doris 与 ClickHouse 在业务中的隐藏陷阱:那些官方文档没告诉你的细节》如果你在使用 Doris 或 ClickHouse 的过程中遇到了具体问题,欢迎在评论区留言交流,我会尽力为大家解答。

<think>好的,用户之前让我介绍了Doris中的Catalog,现在他们想了解Doris作为大数据框架,与ClickHouse和HBase相比的优劣势。我需要先回忆这三个系统的特点,然后分点比较他们的优势和劣势。 首先,Doris是一个MPP架构的分析型数据库,适合OLAP场景,支持高并发查询和实时数据分析。ClickHouse也是OLAP方向的,擅长高性能的批量数据分析和海量数据查询,但可能在高并发和实时数据更新上不如Doris。HBase则是基于Hadoop的列式存储,适合OLTP和实时读写,特别是随机访问和大数据量的存储。 接下来,用户可能想知道这三个系统在不同场景下的适用性,比如数据量、查询延迟、并发能力、数据更新频率等方面。需要比较各自的架构差异,比如DorisMPP和列式存储,ClickHouse的列式存储和向量化执行,HBase的分布式架构和LSM树。 用户可能是在选型时需要权衡不同系统的优缺点,所以需要结构化的对比,可能分为优势、劣势,或者按不同维度如性能、扩展性、易用性等来展开。要确保回答清晰,帮助用户理解每个系统的适用场景。 另外,用户之前提到过Doris的Catalog功能,可能他们也在考虑数据联邦查询,这时候可以提到Doris在跨数据源查询方面的优势,而ClickHouse和HBase可能更专注于自身存储的数据处理。 需要注意避免过于技术化的术语,但又要准确。比如解释Doris的实时分析能力,ClickHouse的批量处理优势,HBase的随机读写能力。同时,指出各自的不足,比如HBase的复杂查询支持较弱,ClickHouse的高并发限制,Doris的Join性能可能不如其他等。 还要考虑用户的实际应用场景,比如是否需要高并发、实时更新、复杂事务支持,或者是否更关注查询速度和吞吐量。根据这些因素,给出合适的比较,帮助用户做出决策。 最后,总结三个系统的适用场景,让用户能一目了然地根据自身需求选择合适的技术。</think>以下是 DorisClickHouse、HBase 的对比分析,从架构特性、适用场景、性能表现等维度展开,并给出典型场景建议: --- ### **一、架构特性对比** | 特性 | Doris | ClickHouse | HBase | |---------------------|------------------------|------------------------|------------------------| | **数据模型** | 列式存储+MPP架构 | 列式存储+向量化引擎 | 列式存储+LSM树 | | **实时写入** | 支持微批/实时导入 | 批量导入更高效 | 支持高吞吐实时写入 | | **更新能力** | 支持 Upsert 更新 | 仅支持批量覆盖 | 支持行级随机读写 | | **索引类型** | 前缀索引+倒排索引 | 稀疏索引+跳数索引 | 行键索引 | | **事务支持** | 部分事务(导入级别) | 无事务 | 行级原子性 | --- ### **二、性能维度对比** #### 🔹 **查询性能** - **Doris**:在高并发(1000+ QPS)场景下表现优异,适合即席查询 ```sql -- 典型场景:多表关联+聚合 SELECT user_id, SUM(order_amount) FROM orders JOIN users USING(user_id) WHERE dt='2023-10-01' GROUP BY user_id; ``` - **ClickHouse**:单表聚合查询速度最快(比 Doris 快 2-5 倍),但并发能力弱(建议 <100 QPS) - **HBase**:擅长键值查询(毫秒级响应),复杂查询需结合 Phoenix 等组件 #### 🔹 **写入吞吐** - **HBase**:写入吞吐最高(单集群百万级 TPS) - **Doris**:支持每秒数万行实时写入 - **ClickHouse**:适合批量导入(建议 >100MB/批次) --- ### **三、核心优势对比** #### 🔹 **Doris 优势** 1. **实时分析能力**:支持秒级数据可见性 2. **高并发服务**:可承载千级并发查询 3. **易用性**:兼容 MySQL 协议,支持标准 SQL 4. **多源融合**:通过 Catalog 实现跨数据源联邦查询 #### 🔹 **ClickHouse 优势** 1. **极致压缩率**:平均比 Doris 节省 30% 存储空间 2. **海量数据扫描**:单查询可高效处理 PB 级数据 3. **特殊引擎**:CollapsingMergeTree 等引擎支持特殊场景 #### 🔹 **HBase 优势** 1. **随机读写能力**:支持百万级 TPS 写入 2. **水平扩展性**:Region 自动分裂实现线性扩展 3. **强一致性**:基于 HDFS 的多副本机制 --- ### **四、典型场景建议** | 场景 | 推荐选择 | 原因说明 | |-------------------------------|------------------------|------------------------------| | 高并发报表查询(<1s响应) | Doris | 并发承载能力强,查询优化器完善| | 离线日志分析(日级T+1) | ClickHouse | 存储成本低,批量处理性能卓越 | | 实时用户画像更新 | HBase | 支持高频 Upsert 操作 | | 混合负载(ETL+查询) | Doris | 支持数据导入与查询资源隔离 | | 时序数据存储(设备监控) | ClickHouse | 时间分区引擎优化明显 | --- ### **五、局限性对比** | 系统 | 主要局限 | |--------------|--------------------------------------------------------------------------| | **Doris** | Join 性能弱于 ClickHouse,存储成本较高 | | **ClickHouse**| 不支持实时更新,并发能力差,运维复杂度高 | | **HBase** | 不支持复杂 SQL,二级索引实现复杂,需要搭配 Phoenix 等组件 | --- ### **六、选型决策树** ``` 是否需要高并发实时分析? ├─ 是 → Doris └─ 否 → 数据规模如何? ├─ PB级批量分析 → ClickHouse └─ 需要高频随机读写 → HBase ``` 建议在实际场景中通过 **TPC-H 基准测试**(使用相同硬件配置)验证具体性能表现,Doris 在 SSB 测试中展现的并发能力通常是 ClickHouse 的 5-10 倍。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值