【深度学习】多分类任务评估指标sklearn和torchmetrics对比

说明

sklearn和torchmetrics两个metric代码跑模型的输出结果一致,对比他们的区别。评估指标写在下面

sklearn代码

import torch
import numpy as np
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score

class MultiClassReport():
    """
    Accuracy, F1 Score, Precision and Recall for multi - class classification task.
    """

    def __init__(self, name='MultiClassReport', average='macro'):
        super(MultiClassReport, self).__init__()
        self.average = average
        self._name = name
        self.reset()

    def reset(self):
        """
        Resets all the metric state.
        """
        self.y_prob = []
        self.y_true = []

    def update(self, probs, labels):
        # 将Tensor转换为numpy数组并添加到相应列表中
        if isinstance(probs, torch.Tensor):
            if probs.requires_grad:
                probs = probs.detach()
            probs = probs.cpu().numpy()
        if isinstance(labels, torch.Tensor):
            if labels.requires_grad:
                labels = labels.detach()
            labels = labels.cpu()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zz的学习笔记本

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值