算法基本思想
用GMM对背景建模的基本思想是把每一个像素点所呈现的颜色用K个高斯分布的叠加来表示,通常K取3-5之间。将像素点所呈现的颜色X认为是随机变量,则在每时刻t=1,…,T所得到视频帧图像的像素值只是随机变量X的采样值(观值)。
在进行前景检测前,先对背景进行训练,对每一帧图像中每个背景采用一个混合高斯模型进行模拟,背景一旦提取出来,前景的检测就简单了,检查像素是否与背景的高斯模型匹配,匹配是背景,不匹配就是前景。
所以关键就是混合高斯背景模型的建立。
GMM之所以能够将前景和背景分开是基于如下两点事实的:
(1)在长期观测的场景中,背景占大多数时间,更多的数据是支持背景分布的
(2)即使是相对颜色一致的运动物体也会比背景产生更多变化,况且一般情况下物体都是带有不同颜色的
算法大致这样:
- 首先初始化预先定义的几个高斯模型,对高斯模型中的参数进行初始化,并求出之后将要用到的参数。
- 其次,对于每一帧中的每一个像素进行处理,看其是否匹配某个模型,若匹配,则将其归入该模型中,并对该模型根据新的像素值进行新,若不匹配,则以该像素建立一个高斯模型,初始化参数,代替原有模型中最不可能的模型。
- 最后选择前面几个最有可能的模型作为背景模型,为背景目标提取做铺垫。