本文为大家揭示 NebulaGraph 率先提出的 Graph RAG 方法,这种结合知识图谱、图数据库作为大模型结合私有知识系统的最新技术栈,是 LLM+ 系列的第三篇,加上之前的图上下文学习、Text2Cypher 这两篇文章,目前 NebulaGraph + LLM 相关的文章一共有 3 篇。
Graph RAG
在第一篇关于上下文学习的博客中我们介绍过,RAG(Retrieval Argumented Generation)这种基于特定任务/问题的文档检索范式中,我们通常先收集必要的上下文,然后利用具有认知能力的机器学习模型进行上下文学习(in-context learning),来合成任务的答案。
借助 LLM 这个只需要”说话“就可以灵活处理复杂问题的感知层,只需要两步,就能搭建一个基于私有知识的智能应用:
- 利用各种搜索方式(比如 Embedding 与向量数据库)从给定的文档中检索相关知识。
- 利用 LLM 理解并智能地合成答案。
而这篇博客中,我们结合最新的探索进展和思考,尝试把 Graph RAG 和其他方法进行比较,说得更透一点。此外,我们决定开始用 Graph RAG 这个叫法来描述它。
实际上,Graph RAG,是最先由我和 Jerry Liu 的直播研讨会讨论和相关的讨论的 Twitter Thread 中提到的,差不多的内容我在 NebulaGraph 社区直播 中也用中文介绍过。
在 RAG 中知识图谱的价值
这部分内容我们在第一篇文章中阐述过,比如一个查询:“告诉我所有关于苹果和乔布斯的事”,基于乔布斯自传这本书进行问答,而这个问题涉及到的上下文分布在自传这本书的 30 页(分块)的时候,传统的“分割数据,Embedding 再向量搜索”方法在多个文档块里用 TOP-K 去搜索的方法很难得到这种分散,细粒的完整信息。而且,这种方法还很容易遗漏互相关联的文档块,从而导致信息检索不完整。
除此之外,在之后一次技术会议中,我有幸和 leadscloud.com 的徐旭讨论之后(他们因为有知识图谱的技术背景,也做了和我们类似的探索和尝试!),让我意识到知识图谱可以减少基于嵌入的语义搜索所导致的不准确性。徐旭给出的一个有趣的例子是“保温大棚”与“保温杯”,尽管在语义上两者是存在相关性的,但在大多数场景下,这种通用语义(Embedding)下的相关性常常是我们不希望产生的,进而作为错误的上下文而引入“幻觉”。
这时候,保有领域知识的知识图谱则是非常直接可以缓解、消除这种幻觉的手段。