PCL点云处理之配准(十)

244 篇文章 1290 订阅 ¥19.90 ¥99.00
本文介绍了点云配准的原理和常用方法,重点探讨了PCL库中SAC-IA结合ICP以及4PCS的配准实验。通过代码展示和效果对比,分析了不同配准方法的适用性和效果,指出参数调整对配准结果的影响。
摘要由CSDN通过智能技术生成

配准原理与常用方法

点云配准:
求坐标变换参数 R(旋转矩阵)和 t (平移向量)得到T(变换矩阵),将源点云变换到目标点云的位置,使二者能够重合。
常用方法:
(a)基于局部特征描述的方法
(b)基于全局搜索策略的方法
(c)基于正态分布的方法(NDT)

PCL库中的配准实验一、(SAC-IA + ICP)

根据PCL库中的SAC粗配准与ICP精配准进行实验,使用过程必须根据输入的点云数据进行参数调整,根据点云间距设置合理的点云抽稀距离和特征计算范围,个人经验是后者应该为点云间距的三倍以上,不能小于点云间距。

代码如下,复制黏贴,修改点云读入和写出的路径,即可运行:

#include 
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云学徒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值