机载点云单木分割方法和实现过程的概括介绍(论文赏析)

本文介绍了机载点云数据处理中的单木分割方法,包括基于CHM(归一化数字表面模型)和直接点云处理两种主流方式。CHM通过建立规则格网并进行点云投影及插值计算得到。常见的分割方法有分水岭算法、点云距离分类和四次多项式拟合,其中四次多项式拟合法对针叶林效果较好。然而,确定树冠顶点是关键且挑战性的问题,影响分割精度。实际操作中,顶点搜索的准确性对结果至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里写目录标题

主流方法图

在这里插入图片描述

简单说明

从数据组织方法上看,主要有两种,一种是基于CHM,一种是直接基于点云。

CHM实际上就是归一化的数字表面模型nDSM,实现方法为,建立二维规则格网,将点云投影到格网中,格网值为内部点云的最低点高程,格网中无点时,进行插值,即将邻近格网值赋予该无点格网,得到DEM,同理将最低点高程改为最高点高程得到DSM,二者做差即可得到CHM。

a\ 分水岭方法在opencv库以及matlab中都可以直接调用分水岭函数来实现,关键在于如果在对应分割区域构建标记,来避免过分割现象。

b\ 基于点云距离分类的方法在LIDAR360软件中有所实现。

c\ 四次多项式拟合法主要针对针叶林的单木分割效果比较好,这主要是因为该类树木的树冠顶点在使用局部最大值进行搜索时效果较好,而冠层顶面凹凸不平或者较为平整时,树冠顶点难以确定,使得该类方法表现不加。

大多数的单木分割方法依赖于树冠顶点,而实际上树冠顶点确定总是会存在问题,如搜索半径和树木类型都会

机载LiDAR(激光雷达)点云单木分割是指利用分水岭算法结合点云空间分布识别的方法,将机载LiDAR获取的点云数据中的棵树进行分割,即将树点云从整个点云数据中提取出来。 首先,机载LiDAR通过发射激光束并接收反射回来的信号,获取了大量的点云数据。这些点云数据包含了不同空间位置的点云,其中包含一定比例的树点云。 其次,结合分水岭算法点云空间分布识别的方法,我们首先对整个点云数据进行预处理。预处理包括对点云数据进行滤波、去除地面点云等操作,从而减少噪声冗余数据的影响。 然后,利用点云空间分布识别的方法,通过对点云数据的聚类、空间分布等特征进行提取分析,确定树所在的点云区域。这一步的目的是将树点云从其他非树点云区分开来。 最后,运用分水岭算法对已经提取出的树点云进行分割。分水岭算法是一种基于图像分割方法,它模拟了水在图像上的分流汇合过程。在这里,我们将树点云看做图像上的物体,将树的边界看做水的分界线,通过计算水流到达的最大高度来确定树的边界。 通过以上步骤,我们可以实现机载LiDAR点云单木分割。通过结合分水岭算法点云空间分布识别的方法,我们可以高效准确地从点云数据中提取出树点云,为后续的树检测分析提供基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云学徒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值