动态规划的大部分题目 都是不需要输出具体的路径的,但是万一要输出路径呢?
下面来看一下动态规划如何输出路径,以背包问题为例:
一般而言,背包问题是要求一个最优值,
如果要求输出这个最优值的方案(路径),可以参照一般动态规划问题输出方案的方法:记录下每个状态的最优值是由状态转移方程的哪一项推出来的,换句话说,记录下它是由哪一个策略推出来的。便可根据这条策略找到上一个状态,从上一个状态接着向前推即可。
这也就意味着 我们必须要维护一个状态数组 这个数组和DP数组一样,每个元素必须记录着这个状态是由哪个元素转移过来的。也就是说 我们要知道我们选择当前的坐标 是由哪个坐标跳过来的。所以我们在每个点就存上一个点的坐标。
或者我们选择哪个就把哪个坐标点标记为1 如果我们并不决定要走那个点 就把其重新覆盖为0.
输出字典序最小的最优方案:这样的话 跟我们选择的顺序有关系 --感觉这就完全改变了这个问题。解决方案并没有看懂
求次优解/第K优解: 我们的思路还是动态规划 状态转移方程也没有变化。唯一有变化是 针对每个点 我们不是只存一个当前最优值 而是存所有的可能的值(其实也不是所有可能的值 而是最大或者最小的k个值(至于为什么这样 见附录的解释)),将之放进PQ里面,每次要每个状态都试一遍。最后在数组的最后 输出PQ种poll出来的第K个元素即可。
附录:
为什么我们合并两个序列a b
假设第一个序列长为m 第二个为n
我们只需要取第一个序列前k个和第二个序列的前k个
合并得到的长度为2k的序列 这个序列一定包含a+b的前k个最大的元素。
为什么呢?
假设
a = [a1 a2 a3 a4 a5] 从大到小
b = [b1 b2 b3 b4 b5] 从大到小
k=3
我们取a的前三个和b的前3个 这六个元素一面一定包含 [a1 a2 a3 a4 a5 b1 b2 b3 b4 b5] (乱序)的前k大的元素。
证明:
[b1 + a1, b1 + a2, b1 + a3]就已经比[b1 + a4]大了 所以已经存在k个比b1+a4大的了 所以这个组合肯定没有机会进入前K大。所以每个取前k个就足够了。
refer:
dd大牛的背包九讲-背包问题汇总