POJ 2253 Frogger
题目大意:
湖中有n块石头,编号从1到n,有两只青蛙,
A在1号石头上,B在2号石头上,
A想跳着去找她。但是B的石头超出了他的跳跃范围。
因此,A使用其他石头作为中间站,通过一系列的小跳跃到达她。
青蛙从一块石头跳到另一块石头(中间可经过其它石头)的过程中跳最远的那次距离定义为青蛙距离
你的工作是计算从1号石头跳到2号石头之间的所有可能路径中最小的青蛙距离。
具体思路:
最小生成树的解法,有prim和Kruskal
个人感觉用Kruskal比较方便,用Prim不能保证加进来的边是依次递增的,而Kruskal可以
另外此题也可用最短路的思想做,文末附详细代码
Prim每次将距离1号石头最短距离的点加进连通分量来,并且用它去更新其它的石头,
当距离最短的石头为2号时结束
此时依次加进来的最小边中值最大的即为所求(因为不能保证边递增加进来)
Kruskal可保证每次加入边依次递增:依次把边从小到大加进来,直至遇到2号石头,输出此边即可
具体代码:
//Kruskal
#include<iostream>
#include<cstdio>
#include<cmath>
#include<stdlib.h>
#include<algorithm>
using namespace std;
int n;
const int N = 210;
const double INF = 1e5;
typedef pair<int, int> P;
double dis[N];
int visit[N];
P point[N];
double ans;
double getLength(double x1, double y1, double x2, double y2)
{
double len = sqrt((x1 - x2)*(x1 - x2) + (y1 - y2)*(y1 - y2));
return len;
}
void init()
{
for (int i = 1; i <= n; i++)
visit[i] = 0;
ans = -1.0;
for (int i = 2; i <= n; i++)
dis[i] = getLength(point[1].first, point[1].second, point[i].first, point[i].second);
}
void dijkstra()
{
visit[1] = 1; //1号石头起点,标记
for (int i = 2; i <= n; i++)
{
int t = -1;
for (int j = 2; j <= n; j++)
{
//得到距离最小的点
if (!visit[j] && (t==-1 || dis[j] < dis[t])) {
t = j;
}
}
//与prime的不同之处,这一步很关键,以为t==2就一定是解,WA了很多次,实际上松驰之后还可能会出现更短的边
//用并查集的方式求最小生成树理论上就一定是最优解,但是要求数据处理时求出每两点的距离
if (dis[t] > ans)ans = dis[t];
if (t == 2) {
return;
}
visit[t] = 1; //标记
for (int j = 1; j <= n; j++)
{
//松弛各边
if (!visit[j]) {
double len = getLength(point[t].first, point[t].second, point[j].first, point[j].second);
dis[j] = min(len, dis[j]);
}
}
}
}
int main()
{
int cnt = 1;
while (cin >> n, n)
{
for (int i = 1; i <= n; i++)
{
int x, y;
cin >> x >> y ;
point[i].first = x, point[i].second = y;
}
init();
dijkstra();
printf("Scenario #%d\n", cnt);
printf("Frog Distance = %.3lf\n", ans);
printf("\n");
cnt++;
}
return 0;
}
//Dijkstra
#include<iostream>
#include<cstdio>
#include<cmath>
#include<stdlib.h>
#include<algorithm>
using namespace std;
int n;
const int N = 210;
const double INF = 1e5;
typedef pair<int, int> P;
double dis[N]; //代表从1号到i号石头的青蛙距离
int visit[N];
P point[N];
double getLength(double x1, double y1, double x2, double y2)
{
double len = sqrt((x1 - x2)*(x1 - x2) + (y1 - y2)*(y1 - y2));
return len;
}
void init()
{
for (int i = 1; i <= n; i++)
visit[i] = 0;
for (int i = 2; i <= n; i++) //初始化各个石头到1号石头的青蛙距离
dis[i] = getLength(point[1].first, point[1].second, point[i].first, point[i].second);
}
void dijkstra()
{
visit[1] = 1; //1号石头起点,标记
for (int i = 2; i <= n; i++)
{
int t = -1;
for (int j = 2; j <= n; j++)
{
//得到距离最小的点
if (!visit[j] && (t==-1 || dis[j] < dis[t])) {
t = j;
}
}
visit[t] = 1; //标记
for (int j = 1; j <= n; j++)
{
if (!visit[j]) {
double len = getLength(point[t].first, point[t].second, point[j].first, point[j].second);
if (dis[j] > max(len, dis[t]))dis[j] = max(len, dis[t]);
//松驰操作,dis[j]表示1到j的青蛙距离,max(len, dis[t])表示1通过t到达j的青蛙距离,两者取最小值
}
}
}
}
int main()
{
int cnt = 1;
while (cin >> n, n)
{
for (int i = 1; i <= n; i++)
{
int x, y;
cin >> x >> y ;
point[i].first = x, point[i].second = y;
}
init();
dijkstra();
printf("Scenario #%d\n", cnt);
printf("Frog Distance = %.3lf\n", dis[2]);
printf("\n");
cnt++;
}
return 0;
}