[NLP入门]基于 Dense 层的电影评论分类

本文介绍了如何运用全连接层(Dense层)搭建神经网络解决IMDB电影评论的情感分类问题,通过预处理数据,构建网络,训练与评估,目标是在测试集上达到85%以上的精度。
摘要由CSDN通过智能技术生成

最近在学习自然语言处理(NLP)IMDB 电影评论分类问题也算是一道入门题了,帮助自己熟悉神经网络的构建流程以及基本操作,跟大家分享一下。主要参考书目《Python深度学习》

一、任务描述

使用 IMDB 数据集中预处理后的电影评论,训练模型使之能够分辨电影评论为正面的还是负面的达到 85 % 85\% 85% 以上的精度

1. 原始数据

评论

每条 评论 已经被转换为整数序列,对应 字典 中的某个单词。

标签

同时,每条评论也有与之对应的 标签。该标签是由 0,1 组成的列表,其中 0 代表负面,1 代表正面

2. 网络架构

使用全连接层(Dense层)作为网络的基本架构,并且只有 2 个中间层使用 relu 作为激活函数,每层需要有 16 个隐藏单元

3. 目标

使训练后的模型在测试集上能达到 85 % 85\% 85% 以上的精度,并使用 maptplotlib 作出训练损失和验证损失随着迭代次数变化的图像,对过程进行分析与优化

二、详细设计

1. 准备数据

1)加载 IMDB 数据集

[Snippest 1] 加载 IMDB 数据集

from keras.datasets import imdb

(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)

train_data[i]: 为评论 i 的整数序列;

train_labels[i]:指示评论 i 为正面评论还是负面评论。

其样例如下:

print(train_data[0], "\n")
print(train_labels[0])
[1, 14, 22, 16, 43, 530, 973, 1622, 1385, 65, 458, 4468, 66, 3941, 4, 173, 36, 256, 5, 25, 100, 43, 838, 112, 50, 670, 2, 9, 35, 480, 284, 5, 150, 4, 172, 112, 167, 2, 336, 385, 39, 4, 172, 4536, 1111, 17, 546, 38, 13, 447, 4, 192, 50, 16, 6, 147, 2025, 19, 14, 22, 4, 1920, 4613, 469, 4, 22, 71, 87, 12, 16, 43, 530, 38, 76, 15, 13, 1247, 4, 22, 17, 515, 17, 12, 16, 626, 18, 2, 5, 62, 386, 12, 8, 316, 8, 106, 5, 4, 2223, 5244, 16, 480, 66, 3785, 33, 4, 130, 12, 16, 38, 619, 5, 25, 124, 51, 36, 135, 48, 25, 1415, 33, 6, 22, 12, 215, 28, 77, 52, 5, 14, 407, 16, 82, 2, 8, 4, 107, 117, 5952, 15, 256, 4, 2, 7, 3766, 5, 723, 36, 71, 43, 530, 476, 26, 400, 317, 46, 7, 4, 2, 1029, 13, 104, 88, 4, 381, 15, 297, 98, 32, 2071, 56, 26, 141, 6, 194, 7486, 18, 4, 226, 22, 21, 134, 476, 26, 480, 5, 144, 30, 5535, 18, 51, 36, 28, 224, 92, 25, 104, 4, 226, 65, 16, 38, 1334, 88, 12, 16, 283, 5, 16, 4472, 113, 103, 32, 15, 16, 5345, 19, 178, 32] 

1
2)预处理数据

由于原始的评论数据是整数序列,是变长的整数列表,不能作为网络层的输入。可以考虑对其进行 one-hot 编码,转为高维的向量。

由于:

  • 单词序列的范围为 [ 0 , 9999 ] [0, 9999] [0,9999]

  • 对于单条评论中的单词重复项可以忽略,对结果影响不大

从而可以得到编码公式:

r e s u l t [ i ] [ w o r d I n d e x ] = 1 result[i][wordIndex] = 1 result[i][wordIndex]=1

例如,假定单词序列范围为 [ 0 , 4 ] [0, 4] [0,4]remark[i] = [1, 3],则编码后的 result[i] = [0, 1, 0, 1, 0],即索引 1、3 处为 1,其余均为 0

[Snippest 2] 评论序列独热编码

import numpy as np

def remark2onehot(remark_seqs, dimension=10000):
    results = np.zeros((len(remark_seqs), dimension))
    for i, wordIndex in enumerate(remark_seqs):
        results[i][wordIndex] = 1
    return results

train_data = remark2onehot(train_data)
test_data = remark2onehot(test_data)
# Test one-hot encoding

print("train_data[0] = \n", train_data[0])
print("test_data [0] = \n", test_data [0])
train_data[0] = 
 [0. 1. 1. ... 0. 0. 0.]
test_data [0] = 
 [0. 1. 1. ... 0. 0. 0.]

还要将标签转为 numpy 的数组

[Snippest 3] 标签向量化

train_labels = np.asarray((train_labels)
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值