LeNet
LeNet(LeNet-5)由以下两个部分组成:
- 卷积编码器:由两个卷积层组成。
- 全连接稠密块:由3个全连接层组成。
总结
- LeNet是早期成功的神经网络;
- 先使用卷积层来学习图片的空间信息;
- 然后通过池化层来降低图片的敏感度;
- 最后使用全连接层来转换到类别空间。
简化LeNet
- 输入图像为FASHION-MNIST:[28, 28]
代码实现简化LeNet
- 导入相关库
import torch
from torch import nn
from d2l import torch as d2l
- 定义网络模型
class Reshape(torch.nn.Module):
# 将数据集的形状改为[批量大小,通道数,长,宽]
def forward(self, x):
return x.view(-1, 1, 28, 28)
net = torch.nn.Sequential(
Reshape(), # [1, 1, 28,28]
nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(), # [1, 6, 28, 28]
nn.AvgPool2d(2, stride=2), # [1, 6, 14, 14]
nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(), # [1, 16, 10, 10]
nn.AvgPool2d(2, stride=2), # [1, 16, 5, 5]
nn.Flatten(), # [1, 16*5*5]
nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(), # [1, 120]
nn.Linear(120, 84), nn.Sigmoid(), # [1, 84]
nn.Linear(84, 10)) # [1, 10]
- 查看模型
X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
for layer in net:
X = layer(X)
print(layer.__class__.__name__, 'output shape: \t', X.shape)
- 加载Fashin-MNIST数据集
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)
# 查看训练集的内容:[批量大小,通道数,长,宽]
train_X,train_y = next(iter(train_iter))
train_X.shape, train_y.shape
# 查看验证集的内容:[批量大小,通道数,长,宽]
test_X,test_y = next(iter(test_iter))
test_X.shape, test_y.shape
5. 计算精度
def evaluate_accuracy_gpu(net, data_iter, device=None):
"""使用GPU计算模型在数据集上的精度"""
if isinstance(net, torch.nn.Module):
net.eval()
if not device:
device = next(iter(net.parameters())).device
metric = d2l.Accumulator(2)
for X, y in data_iter:
if isinstance(X, list):
X = [x.to(device) for x in X]
else:
X = X.to(device)
y = y.to(device)
metric.add(d2l.accuracy(net(X), y), y.numel())
return metric[0] / metric[1] # # 分类正确的个数/样本总数
- 定义训练函数
- 为了使用GPU,得修改3.6的训练函数
- 训练输入、标签 放入GPU
- 训练模型放入GPU
- 验证输人放入GPU
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
"""使用GPU训练模型(在第6章定义)"""
global train_l, test_acc, train_acc, metric
def init_weights(m):
if type(m) == nn.Linear or type(m) == nn.Conv2d:
nn.init.xavier_uniform_(m.weight)
net.apply(init_weights)
print('training on: ', device)
net.to(device)
optimizer = torch.optim.SGD(net.parameters(), lr=lr)
loss = nn.CrossEntropyLoss()
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
legend=['train loss', 'train acc', 'test acc'])
timer, num_batches = d2l.Timer(), len(train_iter)
for epoch in range(num_epochs):
# 训练损失之和,训练准确率之和,样本数
metric = d2l.Accumulator(3)
net.train()
for i, (X, y) in enumerate(train_iter):
timer.start()
optimizer.zero_grad()
X, y = X.to(device), y.to(device)
y_hat = net(X)
l = loss(y_hat, y)
l.backward()
optimizer.step()
metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
timer.stop()
train_l = metric[0] / metric[2]
train_acc = metric[1] / metric[2]
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
animator.add(epoch + (i + 1) / num_batches,
(train_l, train_acc, None))
test_acc = evaluate_accuracy_gpu(net, test_iter)
animator.add(epoch + 1, (None, None, test_acc))
print(f'loss: {train_l:.3f}, train acc: {train_acc:.3f},'
f'test acc: {test_acc:.3f}')
print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec, '
f'on {str(device)}')
- 训练模型
lr, num_epochs = 1, 10 # 课本中给的lr是0.9 要是激活函数替换曾ReLU,学习率也应该调低,精度就会变大
train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())