(动手学习深度学习)第6章卷积神经网络---LeNet

本文介绍了LeNet-5神经网络的结构,包括卷积编码器和全连接稠密块,详细展示了如何用简化版本的LeNet处理Fashion-MNIST数据集,并提供了使用PyTorch实现的代码。文中还涵盖了训练过程、精度计算和使用GPU进行加速的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LeNet

在这里插入图片描述

LeNet(LeNet-5)由以下两个部分组成:

  • 卷积编码器:由两个卷积层组成。
  • 全连接稠密块:由3个全连接层组成。

总结

  • LeNet是早期成功的神经网络;
  • 先使用卷积层来学习图片的空间信息;
  • 然后通过池化层来降低图片的敏感度;
  • 最后使用全连接层来转换到类别空间。

简化LeNet

  • 输入图像为FASHION-MNIST:[28, 28]
    在这里插入图片描述

代码实现简化LeNet

  1. 导入相关库
import torch
from torch import nn
from d2l import torch as d2l
  1. 定义网络模型
class Reshape(torch.nn.Module):
    # 将数据集的形状改为[批量大小,通道数,长,宽]
    def forward(self, x):
        return x.view(-1, 1, 28, 28)
net = torch.nn.Sequential(
    Reshape(),  # [1, 1, 28,28]
    
    nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),  # [1, 6, 28, 28]
    nn.AvgPool2d(2, stride=2),  # [1, 6, 14, 14]
    
    nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),  # [1, 16, 10, 10]
    nn.AvgPool2d(2, stride=2),   # [1, 16, 5, 5]
    
    nn.Flatten(),  # [1, 16*5*5]
    
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),  # [1, 120]
    nn.Linear(120, 84), nn.Sigmoid(),  # [1, 84]
    nn.Linear(84, 10))  # [1, 10]
  1. 查看模型
X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__, 'output shape: \t', X.shape)

在这里插入图片描述

  1. 加载Fashin-MNIST数据集
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)
# 查看训练集的内容:[批量大小,通道数,长,宽]
train_X,train_y = next(iter(train_iter))
train_X.shape, train_y.shape

在这里插入图片描述

# 查看验证集的内容:[批量大小,通道数,长,宽]
test_X,test_y = next(iter(test_iter))
test_X.shape, test_y.shape

在这里插入图片描述
5. 计算精度

def evaluate_accuracy_gpu(net, data_iter, device=None):
    """使用GPU计算模型在数据集上的精度"""
    if isinstance(net, torch.nn.Module):
        net.eval()
        if not device:
            device = next(iter(net.parameters())).device
    metric = d2l.Accumulator(2)
    for X, y in data_iter:
        if isinstance(X, list):
            X = [x.to(device) for x in X]
        else:
            X = X.to(device)
        y = y.to(device)
        metric.add(d2l.accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]  # # 分类正确的个数/样本总数
  1. 定义训练函数
  • 为了使用GPU,得修改3.6的训练函数
    • 训练输入、标签 放入GPU
    • 训练模型放入GPU
    • 验证输人放入GPU
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
    """使用GPU训练模型(在第6章定义)"""
    global train_l, test_acc, train_acc, metric

    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)
    net.apply(init_weights)
    print('training on: ', device)
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])
    timer, num_batches = d2l.Timer(), len(train_iter)
    for epoch in range(num_epochs):
        # 训练损失之和,训练准确率之和,样本数
        metric = d2l.Accumulator(3)
        net.train()
        for i, (X, y) in enumerate(train_iter):
            timer.start()
            optimizer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()
            metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
            timer.stop()
            train_l = metric[0] / metric[2]
            train_acc = metric[1] / metric[2]
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (train_l, train_acc, None))
        test_acc = evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))
    print(f'loss: {train_l:.3f}, train acc: {train_acc:.3f},'
          f'test acc: {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec, '
          f'on {str(device)}')
  1. 训练模型
lr, num_epochs = 1, 10  # 课本中给的lr是0.9 要是激活函数替换曾ReLU,学习率也应该调低,精度就会变大
train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值