Abstract
因此在本文中,我们提出了中文预训练语言模型 StyleBERT,它结合了以下嵌入信息来增强语言模型的 savvy,例如单词、拼音、五笔和chaizi(拆字)。
Introduction
大规模预训练模型BERT
文本分类的应用
Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks, 2019.
Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. How to fine-tune bert for text classification?, 2020.中文方面的应用
Haiqin Y ang. Bert meets chinese word segmentation, 2019.
Chen Jia, Y uefeng Shi, Qinrong Yang, and Y ue Zhang. Entity enhanced BERT pre-training for Chinese NER. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6384– 6396, Online, November 2020. Association for Computational Linguistics. doi:10.18653/v1/2020.emnlp-main.518. URL https://aclanthology.org/2020.emnlp-main.518.很多作品都将汉字字形信息纳入神经模型,但并没有进行大规模的前训练,

最低0.47元/天 解锁文章
1620

被折叠的 条评论
为什么被折叠?



