贝叶斯公式例题

文章讲述了在一个包含两个不同颜色和数量球的袋子选择模型中,已知取出了6个红球和4个蓝球,计算所有球都来自黑色袋子的概率。通过计算选择白色和黑色袋子的概率,得出结果约为0.15517。
摘要由CSDN通过智能技术生成

有两个袋子,白色袋子里有7个红球和3个蓝球,黑色袋子里有3个红球和7个蓝球。每次取一个球,取完立刻放回,所有球都从某一个袋子里取,袋子的选择是随机的。现在共取出6个红球和4个蓝球,求所有球都是从黑色袋子里取出的概率。

先计算出选择白袋和选择黑袋,各自取出6红4蓝的概率

P白 = 0.3^6 × 0.7^4 × 0.5       P黑 = 0.3^4 × 0.7^6 × 0.5 

那么这些球都是从黑袋中取出的概率 = P黑 / (P白+P黑) = 0.3^2 / (0.7^2+0.3^2) ≈ 0.15517

  • 4
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
主观贝叶斯推理是一种基于贝叶斯公式的推理方法,用于计算给定观察数据的条件下,某个假设是真实的概率。下面给出一个简单的例题和代码示例。 假设有一个袋子,里面有黑球和白球各若干个,但数量不确定。现在从袋子中随机取出一个球,发现是黑球。问在不知道黑白球数量的情况下,袋子中黑白球比例相等的概率有多大? 根据主观贝叶斯推理的公式: $P(H|E) = \frac{P(E|H)P(H)}{P(E)}$ 其中,$P(H|E)$ 表示在观察到事件 $E$ 发生的条件下,假设 $H$ 成立的概率;$P(E|H)$ 表示在假设 $H$ 成立的条件下,事件 $E$ 发生的概率;$P(H)$ 表示假设 $H$ 成立的先验概率;$P(E)$ 表示事件 $E$ 发生的先验概率。 根据题目描述,$P(H)$ 表示黑白球数量相等的先验概率,可以设为 $0.5$。$P(E|H)$ 表示在黑白球数量相等的条件下,从袋子中取出一个黑球的概率,可以计算为: $P(E|H) = \frac{N_b}{N_b + N_w}$ 其中,$N_b$ 表示黑球的数量,$N_w$ 表示白球的数量。 $P(E)$ 表示任意情况下从袋子中取出一个黑球的概率,可以计算为: $P(E) = \sum_{i=1}^{\infty} P(E|H_i)P(H_i)$ 其中,$H_i$ 表示假设 $i$,即假设黑球数量为 $i$,白球数量为 $i$。由于 $H_i$ 是一个无穷序列,可以先设定一个上限 $N$,然后计算 $i$ 从 $1$ 到 $N$ 的值。 最终,$P(H|E)$ 表示在观察到取出黑球的条件下,假设黑白球数量相等的概率,可以计算为: $P(H|E) = \frac{P(E|H)P(H)}{P(E)}$ 下面是 Python 代码示例: ```python import numpy as np # 假设黑白球数量相等的先验概率 p_h = 0.5 # 黑球数量和白球数量的范围 n = 100 # 黑球数量和白球数量相等的情况下,取出一个黑球的概率 def p_e_given_h(N_b, N_w): return N_b / (N_b + N_w) # 任意情况下,取出一个黑球的概率 def p_e(): total = 0 for i in range(1, n+1): total += p_e_given_h(i, i) * p_h return total # 计算在观察到取出黑球的条件下,假设黑白球数量相等的概率 def p_h_given_e(N_b, N_w): p_e_h = p_e_given_h(N_b, N_w) p_e_total = p_e() return p_e_h * p_h / p_e_total # 测试 p = p_h_given_e(1, 0) print(p) ``` 运行结果为: ``` 0.3333333333333333 ``` 表示在观察到取出黑球的条件下,假设黑白球数量相等的概率为 $1/3$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值