由于我太菜了,所以只能写这题的题解了。。。
题面:给你一个4*4的矩形,里面有 + + +和 − - −两种符号,当你改动一个时,它的同行同列都会改变,问如何使它全部变成 − - −。
模拟?emmm…试试。
显然你每个点最多只用按一次就行了(因为你按第二次就相当于没有按嘛),那就暴力试一下(我没试过,应该,大概,可能,也许可以过吧)
那再思考一下,如果数据变大了会怎么办???
找一下规律,如果你想改变当前位置的点,为了不改变其他同行同列的点的状态,可以把这些点也都按一次,然后通过模拟或者计算,你会发现,所有点的状态只有你想要改变的那个点的状态变了。
所以就这样枚举每一个 + + +的点,然后开一个数组记录每个点被按了几次,按了奇数次的就是我们要输出的点。
代码附上(我记得我是寒假集训的时候写好的,所以。。。勿喷。。。)
#include<bits/stdc++.h>
using namespace std;
#define s1(a,n) sort(a+1,a+n+1)
#define s2(a,n) sort(a+1,a+n+1,mycmp)
#define ll long long
#define sg string
#define st struct
#define f1(i,l,r) for(int i=l;i<=r;++i)
#define f2(i,r,l) for(int i=r;i>=l;--i)
#define f3(i,a,b) for(int i=a;i;i=b)
#define me(a,b) memset(a,b,sizeof(a))
#define sf scanf
#define pf printf
char bs[5][5];
int fz[5][5]={},ans=0,f[25][2];
bool mycmp(int x,int y)
{
return x>y;
}
void init()
{
f1(i,1,4)
{
f1(j,1,4)
{
sf("%c",&bs[i][j]);
while(bs[i][j]!='+'&&bs[i][j]!='-')
sf("%c",&bs[i][j]);
if(bs[i][j]=='+')
{
f1(k,1,4)
fz[i][k]++,fz[k][j]++;
fz[i][j]--;//统计每个点的翻转次数
}
}
}
}
void work()
{
f1(i,1,4)
f1(j,1,4)
ans+=(fz[i][j]%2);//找哪几个是翻转了奇数次的
}
void print()
{
pf("%d\n",ans);
f1(i,1,4)
f1(j,1,4)
if(fz[i][j]%2==1)
pf("%d %d\n",i,j);
}
int main()
{
freopen("test.in","r",stdin);
freopen("test.out","w",stdout);
init();
work();
print();
return 0;
}