变分贝叶斯、Variational Inference

在这里插入图片描述
不是大功告成了吗?通常情况下,上式是很难计算的,直观上看,需要考虑所有的都已比较困难了,更不用说能不能积分了,尤其是维度较高的情况,是需要多重积分的。当然,我们可以用Monte Carlo 的方法,不断的采样,然后近似得到结果。但对于高维的情况,我们需要大量的样本才能得到一个比较满意的结果,显然这也不是一个很好的选择。Variational Inference (VI) 为我们提供了另外的一种思路,其基本思想是直接去近似后验分布,通过优化不断地去提高近似程度。下面将介绍VI的基本思想和相关知识。

Evidence Lower Bound (ELBO)

在这里插入图片描述
在这里插入图片描述
log ⁡ p ( x ) \log p(x) logp(x)称为Evidence,ELBO[q]是它的下限。
在这里插入图片描述
最小化ELBO就是变分贝叶斯的任务啦!

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
变分贝叶斯推断(Variational Bayesian Inference)是一种用于近似推断概率模型参数的方法,而高斯混合模型(Gaussian Mixture Model,简称GMM)是一种常用的概率模型,用于对数据进行聚类和密度估计。 在变分贝叶斯推断中,我们希望找到一个近似的后验分布来描述模型参数的不确定性。对于GMM而言,我们需要推断每个高斯分量的均值、协方差矩阵以及每个分量的权重。为了达到这个目标,我们需要引入一个变分分布来逼近后验分布。 具体步骤如下: 1. 假设变分分布由一组参数表示,例如均值和协方差矩阵。可以选择一个具有高灵活性的分布族,如高斯分布。 2. 使用变分推断方法,通过最小化原始模型与变分分布之间的KL散度来找到最佳的变分分布参数。 3. 在高斯混合模型中,我们可以使用变分EM算法来进行推断。首先,使用EM算法通过迭代更新估计模型参数。然后,使用变分推断来更新变分分布参数。 4. 变分推断的迭代过程通常涉及期望步骤(E-step)和最大化步骤(M-step)。在E步中,计算变分分布的期望参数。在M步中,使用这些期望参数来更新模型参数。 5. 迭代上述步骤,直到满足收敛准则,如变分下界(variational lower bound)的收敛。 总的来说,变分贝叶斯推断对于GMM的推断过程涉及到选择适当的变分分布以及迭代的EM算法和变分推断步骤。它通过近似计算后验分布来推断GMM的参数,可用于聚类分析、异常检测等任务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值