自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(22)
  • 资源 (11)
  • 收藏
  • 关注

原创 观测器与卡尔曼滤波器的状态估计对比

在实时控制系统和信号处理中,观测器和卡尔曼滤波器是两个常用于状态估计的工具。本文将通过 Matlab 演示这两者在一维运动系统中的应用,并深入探讨它们的概念、核心点、异同以及本质。

2024-01-27 13:31:57 1542

原创 时域信号中的噪声特性研究:平稳与非平稳噪声的比较分析

平稳噪声是指其统计特性在时间上保持不变的噪声。具体来说,平稳噪声的均值和方差在时间的任何时刻都是常数。

2024-01-26 11:16:10 2880

原创 对数似然函数:为什么在统计学和机器学习中它如此重要?

似然函数是一个在统计学中描述参数的函数,表示在给定观测数据条件下,关于参数的可能性。对数似然函数即是似然函数取对数的结果。对数似然函数=log(似然函数)

2024-01-26 06:54:12 1101

原创 3. MATLAB中Plot绘制放大特定的区域

在MATLAB中,我们经常需要绘制图形并进行一些自定义的操作。在本示例中,我们将演示如何在MATLAB中绘制一个图形,并通过放大某个特定的区域来突出显示。通过这样的操作,我们成功地在MATLAB中绘制了一个图形,并在博客中展示了如何放大特定的区域。希望这个示例对你有帮助!接下来,我们选择了图形中的一个区域进行放大,并在原始图形上使用红色虚线框出放大的区域。函数在图形的合适位置创建了一个放大的区域,并在那里绘制了相应的图形。首先,我们绘制了一个包含正弦和余弦函数的图形。

2024-01-25 10:08:18 1580

原创 2. MATLAB中Plot绘制设定阴影型区域

这段代码的作用是在当前图形中绘制一个带有透明度的青色矩形,用于模拟阴影或者添加视觉效果。你可以根据需要调整顶点坐标、颜色和透明度来满足你的具体要求。

2024-01-25 07:14:51 2463

原创 1. MATLAB的Plot中的Legend设定为多行多列

函数来设置图例的位置和布局。要将图例标记变成2行2列的形式,您可以使用。将图例标记设置为2行2列的形式。您可以根据需要调整数据和图例的位置。在MATLAB R0219中(低版本可能不适用),您可以使用。

2024-01-23 20:47:25 6031

原创 混合高斯模型的应用与理解

其中,P(X) 是观测数据的概率密度函数,πk​ 是第 k 个分量的权重,N(X∣μk​,Σk​) 是多元高斯分布,μk​ 和 Σk​ 分别是第 k 个分量的均值和协方差矩阵。整个混合高斯模型的概率密度函数表示了对每个分量进行加权的总和,每个分量对应一个高斯分布,权重表示了每个分量在总体概率分布中的相对贡献。在混合高斯模型中,假设观测数据是由多个高斯分布组合而成的,每个高斯分布称为一个分量。通过这个示例,我们能够可视化混合高斯模型的概率密度函数,从而更好地理解模型对数据的拟合效果。

2024-01-23 15:50:25 1828

原创 深入理解边缘高斯分布与条件高斯分布

多元高斯分布在统计学和机器学习领域中扮演着关键的角色。在这个分布的框架下,我们经常会遇到边缘高斯分布和条件高斯分布,它们分别涉及了从原始分布中选择一部分变量和在已知条件下计算其他变量的概率分布。本文将深入研究这两个概念,探讨它们的核心思想、数学表示以及在实际问题中的应用。

2024-01-23 10:12:42 1997

原创 多元高斯分布:边缘分布推导

边缘概率分布允许我们从高维随机变量中提取关心的部分,使得问题的复杂性得到降低。在实际应用中,许多问题中只关心某些变量的分布,边缘化允许我们将注意力集中在重要的部分上。通过边缘化,我们可以将原问题简化为更易处理的子问题。这在统计推断、机器学习模型的开发以及贝叶斯推理中都是常见的操作。边缘概率分布允许我们对随机变量的独立性进行建模。如果两个变量在边缘分布下是独立的,那么它们的联合分布可以通过简单地将各自的边缘分布相乘得到。

2024-01-22 21:15:46 652

原创 多元高斯分布:条件分布推导

在概率统计学中,多元高斯分布是一种非常重要的分布,其条件分布的推导在实际问题中有广泛的应用。本文将详细探讨给定部分变量条件下,多元高斯分布中另一部分变量的条件分布的推导过程。1. 多元高斯分布回顾首先,我们回顾一下多元高斯分布的基本形式:其中,Xa和 Xb是随机向量的两个部分,μ 是均值向量,Σ 是协方差矩阵。均值向量:协方差矩阵:此外,使用协方差矩阵的逆矩阵也比较方便,即精度矩阵从而引入精度矩阵2. 条件分布的定义我们的目标是找到给定 X2​ 的条件

2024-01-21 10:19:37 872

原创 克服后验分布复杂性:边缘分布与马尔可夫假设的力量

在面对高维参数空间时,完整后验分布可能变得难以处理。边缘分布的引入就是为了减轻这一难题,它将多维分布转化为关注单一或少数几个变量的分布,降低了问题的维度。

2024-01-20 21:59:16 456

原创 均方意义下的最佳估计:准确性与稳定性的完美平衡

假设我们有一个参数θ,我们希望估计它的值。在贝叶斯统计学中,我们使用后验概率分布来描述参数θ在观测到数据D后的不确定性,表示为P(θ|D)。根据贝叶斯定理,后验分布可以表示为:其中,P(D|θ)是在给定参数θ的条件下观测到数据D的概率,P(θ)是参数θ的先验分布,P(D)是观测到数据D的概率。我们希望找到一个点估计值θ^,使得均方误差最小。均方误差定义为估计值与真实值的平方差的期望值,即:其中,E表示期望。为了最小化均方误差,我们希望找到一个估计值θ^使得上述期望最小。

2024-01-20 13:08:09 1525

原创 贝叶斯估计:Cramér-Rao下界和Fisher信息

设 X 是一个随机变量,其概率密度函数(Probability Density Function, PDF)或概率质量函数(Probability Mass Function, PMF)为 f(x;θ),其中 θ 是待估计的参数。Fisher信息 I(θ) 对于参数 θ 的定义如下:这里,E[⋅] 表示期望运算,(∂/∂θ)​lnf(X;θ) 是对数似然函数关于参数 θ 的偏导数。

2024-01-19 20:11:13 1653

原创 深入理解最大似然估计与最大后验估计:概率中的两大估计法

最大似然估计是一种通过优化似然函数来估计模型参数的方法。似然函数描述了在给定模型和观测数据的情况下,参数值出现的可能性。

2024-01-19 10:57:05 2433

原创 变分贝叶斯估计:参数与状态

通过适当的参数估计和状态估计,我们能够更好地了解和控制汽车的行驶,进而在各种应用领域中取得更为精确和可靠的结果。在统计学和贝叶斯方法中,参数估计和状态估计是两个关键的概念,它们在众多领域,尤其是在汽车动力学的应用中起到至关重要的作用。状态估计涉及对系统的当前状态进行估计。以变分贝叶斯方法为例,状态估计的目标是找到一个变分分布 q(x) 来逼近真实的后验分布 P(x∣y),其中 x 是状态,y 是观测数据。汽车的运动受到动力学模型的控制,而我们关心的是这个模型中的一些未知参数,比如摩擦系数、发动机功率等。

2024-01-18 20:09:59 1036

原创 变分贝叶斯估计:KL散度及变分自由能

这可以通过最小化KL散度来找到最优的变分分布,从而近似真实的后验分布。它是变分推断中的一个目标函数,通过最小化变分自由能,可以找到一个近似分布,使其尽可能接近真实的后验分布。变分自由能与最大化证据下界是等价的,因为最大化 ELBO 的过程等价于最小化其负值,即最小化变分自由能,且通常通过迭代的方式进行。通过最小化变分自由能,我们在近似分布的选择中取得了折中,同时考虑了与真实后验的接近度和模型对观测数据的拟合。其中,Q 是我们希望找到的近似分布,P 是真实的后验分布,X 是观测数据,Z 是未知的潜在变量。

2024-01-18 00:32:58 1407

原创 变分贝叶斯鲁棒滤波算法:Students t 分布

基于学生 t 分布的变分贝叶斯鲁棒滤波算法的关键在于结合了贝叶斯框架、变分推断和学生 t 分布的鲁棒性,以更适应数据中存在离群值或异常值的情况。在基于学生 t 分布的算法中,变分推断允许通过学生 t 分布来近似真实的后验分布,这对于更好地处理离群值和数据分布的偏差至关重要。在鲁棒滤波算法中,特别是对于一些实际应用中可能出现异常值的情况,学生 t 分布的使用有助于提高模型的鲁棒性,减小异常值对估计结果的影响。学生 t 分布的重尾性质使得它在建模数据中的异常值时更具敏感性,从而能够更准确地估计真实的数据分布。

2024-01-17 21:27:13 1512

原创 一些用于描述姿态旋转不确定性的概率密度分布

这些分布能够更灵活地适应多样化的姿态数据。Matrix Fisher 分布适用于旋转矩阵的建模,Bingham 分布可以处理高维方向性数据,von Mises-Fisher 分布用于单位球面上的方向性数据,而流形上的高斯分布能够适应非线性结构的姿态数据。这些分布通常能够更好地捕捉姿态数据的不确定性和变化。在姿态估计问题中,不确定性通常是一个重要的考虑因素,而这些分布提供了更复杂的方式来描述不确定性。传统方法有时候可能基于过于简化的假设,而这些分布能够更好地反映真实世界中姿态的复杂性。

2024-01-17 13:45:22 969

原创 变分贝叶斯估计:Wishart分布

在变分贝叶斯框架中,Wishart分布和逆Wishart分布通常被用作先验分布来建模协方差矩阵的不确定性。在变分推断中,这些分布的使用有助于对后验分布进行有效的近似。

2024-01-17 12:01:01 2708

原创 在变分贝叶斯中的共轭分布选择与意义

变分贝叶斯是一种用于近似推断的强大方法,通过引入变分分布简化了贝叶斯推断问题。在这个过程中,选择一个合适的共轭分布是至关重要的,因为它直接影响了计算的便利性和推断的效率。本文将深入探讨如何选择共轭分布以及共轭分布在变分贝叶斯中的重要意义。

2024-01-16 21:09:22 455

原创 卡尔曼滤波中的Q和R选择原则

卡尔曼滤波(Kalman Filtering)作为一种用于系统状态估计的递归算法,广泛应用于控制系统和传感器融合领域。在该算法中,Q矩阵和R矩阵分别代表系统过程噪声和测量噪声的协方差矩阵。在实际应用中,选择合适的Q和R是至关重要的,本文将探讨它们的选择原则。

2024-01-16 16:20:58 2115

原创 解析贝叶斯滤波中的先验分布、似然函数和后验分布的重要性

先验分布是对系统状态在观测到任何数据之前的概率估计。这个概率分布是基于领域知识、历史信息或者其他先前的经验得出的。先验分布承载了我们对系统状态的初始信念,是贝叶斯推断的起点。似然函数描述了在给定系统状态的情况下,观测到特定数据的可能性。它表达了观测数据对于不同系统状态的支持程度。后验分布是在考虑了观测数据之后,对系统状态的新估计。它是先验分布和似然函数的乘积与边际似然的比值。先验分布、似然函数和后验分布三者相互作用,构成了贝叶斯滤波的基本框架。

2024-01-16 14:55:46 705

贝叶斯滤波与平滑

滤波与平滑是估计理论中最为核心的两类算法,可用于估计未知的状态或参数,贝叶斯滤波与平滑,是指在贝叶斯意义下的滤波与平滑,本书包括了经典的线性与平滑滤波,非线性与平滑滤波,以及费高斯与平滑滤波。

2019-03-06

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除