逆向综合规划在该领域发挥着重要作用有机化学的一个分支,它可以生成一条合成路线针对目标产品。合成路线是从可用分子开始的一系列反应。这个
合成材料生产中最具挑战性的问题路由是候选反应的大搜索空间。估计匹配候选反应的成本已被证明可以有效地修剪搜索空间,从而实现更高的精度与相同的搜索迭代。以及估算对一个反应的估计包括对其所有反应物的估计。那么,如何估算这些反应物的成本直接影响结果的质量。为了获得更好的性能,名为GNN Retro的一种新框架被提出,用于结合图神经网络的逆向综合规划问题网络(GNN)和最新的搜索算法。该框架中GNN的结构可以包含相邻分子的信息,这将提高我们框架的估计精度。关于USPTO数据集表明,该框架可以优于在相同的设置。
传送门:GNN-Retro: Retrosynthetic planning with Graph Neural Networks