GNN-Retro 逆合成路线规划

GNN-Retro是一个新的框架,它将图神经网络(GNN)与先进的搜索算法相结合,以解决有机化学中的逆向综合规划问题。该框架通过考虑相邻分子信息,提高了对合成路线成本估算的准确性,进而优化了搜索空间的修剪,提升了路线规划的效率。在USPTO数据集上的表现表明,GNN-Retro相对于同类方法具有优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

逆向综合规划在该领域发挥着重要作用有机化学的一个分支,它可以生成一条合成路线针对目标产品。合成路线是从可用分子开始的一系列反应。这个
合成材料生产中最具挑战性的问题路由是候选反应的大搜索空间。估计匹配候选反应的成本已被证明可以有效地修剪搜索空间,从而实现更高的精度与相同的搜索迭代。以及估算对一个反应的估计包括对其所有反应物的估计。那么,如何估算这些反应物的成本直接影响结果的质量。为了获得更好的性能,名为GNN Retro的一种新框架被提出,用于结合图神经网络的逆向综合规划问题网络(GNN)和最新的搜索算法。该框架中GNN的结构可以包含相邻分子的信息,这将提高我们框架的估计精度。关于USPTO数据集表明,该框架可以优于在相同的设置。

合成路线与意图
在这里插入图片描述

在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

传送门:GNN-Retro: Retrosynthetic planning with Graph Neural Networks

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值