离散选择模型

1.random utility model

RUM首次由Thurstone(1927)提出的,该模型假设每个消费者心中对各个产品 i i i的效用函数都有由一个固定的效用 μ i ,   i = 1 , … , n \mu_i, \ i=1,\dots,n μi, i=1,,n,再加上一个扰动效用 ϵ i ,   i = 1 , … , n \epsilon_i,\ i=1,\dots,n ϵi, i=1,,n决定的。因此,对于每个消费者来说,每个产品对于他的实际效用就可以表示为:
u i = μ i + ϵ i ,     i = 1 , … , n u_i=\mu_i+\epsilon_i,\ \ \ i=1,\dots,n ui=μi+ϵi,   i=1,,n
其中 μ = ( μ 1 , … , μ n ) T \bm{\mu}=(\mu_1,\dots,\mu_n)^T μ=(μ1,,μn)T表示各产品的确定性效用向量, ϵ = ( ϵ 1 , … , ϵ n ) T \bm{\epsilon}=(\epsilon_1,\dots,\epsilon_n)^T ϵ=(ϵ1,,ϵn)T表示每个产品的随机效用向量,这些随机变量服从联合概率分布 θ ( ⋅ ) \theta(\cdot) θ()。每个消费者会选择所有替代产品中对他而言效用最高的产品。假设 p = ( p 1 , … , p n ) T ,   ∑ i = 1 n p i = 1 \textbf{p}=(p_1,\dots,p_n)^T, \ \sum_{i=1}^{n}p_i=1 p=(p1,,pn)T, i=1npi=1表示消费者对n各替代产品选择的概率,那么消费者最有可能选择的产品的选择概率为:
p i = P ( i = arg ⁡ max ⁡ i ( μ i + ϵ i ) ) p_i=P(i=\arg\max_i (\mu_i+\epsilon_i)) pi=P(i=argimax(μi+ϵi))

1.1 the multinomial logit(MNL)

MNL模型是RUM中一种,且运用广泛,首先被McFadden(1974)提出。MNL模型假设 ϵ \bm{\epsilon} ϵ服从独立同分布的Gumble分布。此时n各替代产品的选择概率可以写成一下形式:

p i m n l = e μ i ∑ k = 1 n e μ k ,    i = 1 , … , n p_i^{mnl}=\frac{e^{\mu_i}}{\sum_{k=1}^{n}e^{\mu_k}},\ \ i=1,\dots,n pimnl=k=1neμkeμi,  i=1,,n

MNL模型运用广泛的原因就是不仅拥有确定的选择概率形式,同时该形式还具有很好的性质,例如该函数的对数似然函数具有凹性,这种性质有利于后续研究。但由于MNL假设了随机项是独立同分布的,也就是各产品两两之间选择概率的比值与其他产品的效用无关(Independence of Irrelevant Alternatives, IIA特性)。

p i m n l p j m n l = e μ i − μ j    ∀ i ≠ j \frac{p_i^{mnl}}{p_j^{mnl}}=e^{\mu_i-\mu_j}\ \ \forall i\not=j pjmnlpimnl=eμiμj  i=j

现实却存在着影响各选择效用的共同因素,组成效用项的某个因素发生变化会引发多种产品的变化,当替代产品之间存在相关关系,那么MNL模型就不能够给予一个很好的选择预测结果。
也属于GEV(Generalized Extrem Value)

1.2 the multinomial probit(MNP)

MNP模型是随即效用模型的随机项服从均值为零,任意方差-协方差矩阵的多元联合高斯分布。因此,与MNL不同,在MNP模型中,随机项的方差可以不同,且各随机项之间可以相关。然而,MNP模型只有在仅存在两个可选择产品时存在显示解。
当只有两个替代产品可供选择时
p 1 = P r ( v 1 + ϵ 1 > v 2 + ϵ 2 ) = P r ( ϵ 2 − ϵ 1 < v 1 − v 2 ) \begin{aligned} p_1&=Pr(v_1+\epsilon_1>v_2+\epsilon_2)\\ &=Pr(\epsilon_2-\epsilon_1<v_1-v_2) \end{aligned} p1=Pr(v1+ϵ1>v2+ϵ2)=Pr(ϵ2ϵ1<v1v2)
其中 ϵ 2 − ϵ 1 ∼ N ( 0 , σ 2 ) ,   σ 2 = V a r ( ϵ 1 ) + V a r ( ϵ 2 ) − 2 C o v ( ϵ 1 , ϵ 2 ) \epsilon_2-\epsilon_1\sim N(0,\sigma^2),\ \sigma^2=Var(\epsilon_1)+Var(\epsilon_2)-2Cov(\epsilon_1,\epsilon_2) ϵ2ϵ1N(0,σ2), σ2=Var(ϵ1)+Var(ϵ2)2Cov(ϵ1,ϵ2)
所以 p 1 = Φ ( v 1 − v 2 σ ) p_1=\Phi(\frac{v_1-v_2}{\sigma}) p1=Φ(σv1v2)

1.3 The nested multinomial logit model(NMNL)

嵌套logit模型有很强的优越性,解决了MNL关于无法解释各替代品之间相关性的问题,同时由于极大似然函数有显式表达式,计算速度比MNP要更快。嵌套logit模型允许替代品之间以一种未被观察到的方式彼此相似,将替代品划分在不同的组里。
以一个两层的嵌套结构为例,假设有n各替代商品,将他们划分为 K K K个蔟中 N 1 , N 2 , … , N K N_1,N_2,\dots,N_K N1,N2,,NK,则在第 N k N_k Nk个蔟中的替代商品 i i i被选中的概率为:
p i = p ( i ∈ N k ) × p ( i ∣ i ∈ N k ) p_i=p(i\in N_k)\times p(i|i\in N_k) pi=p(iNk)×p(iiNk)
同时嵌套logit模型也是一种随即效用模型,消费者会选择效用最高的商品。其中商品 i i i的效用的随机项设为还有相关性的Gumbel分布,那么选择一个商品可以看作是先选择一个蔟,再在这个蔟中选择需要的商品。这两个阶段都能看作是MNL模型:

p ( i ∣ i ∈ N k ) = e 1 τ k μ i ∑ l ∈ N k e 1 τ k μ l p(i|i\in N_k)=\frac{e^{\frac{1}{\tau_k}\mu_i}}{\sum_{l\in N_k}e^{\frac{1}{\tau_k}\mu_l}} p(iiNk)=lNkeτk1μleτk1μi
p ( i ∈ N k ) = e τ k ln ⁡ ( ∑ l ∈ N k e 1 τ k μ l ) ∑ j = 1 K ( e τ j ln ⁡ ( ∑ l ∈ N j e 1 τ j μ l ) ) p(i\in N_k)=\frac{e^{\tau_k\ln(\sum_{l\in N_k}e^{\frac{1}{\tau_k}\mu_l})}}{\sum_{j=1}^K(e^{\tau_j\ln(\sum_{l\in N_j}e^{\frac{1}{\tau_j}\mu_l})})} p(iNk)=j=1K(eτjln(lNjeτj1μl))eτkln(lNkeτk1μl)

因此,选择商品 i i i的概率可以写为

p i = e 1 τ k μ i ∑ l ∈ N k e 1 τ k μ l ⋅ e τ k ln ⁡ ( ∑ l ∈ N k e 1 τ k μ l ) ∑ j = 1 K ( e τ j ln ⁡ ( ∑ l ∈ N j e 1 τ j μ l ) ) p_i=\frac{e^{\frac{1}{\tau_k}\mu_i}}{\sum_{l\in N_k}e^{\frac{1}{\tau_k}\mu_l}}\cdot\frac{e^{\tau_k\ln(\sum_{l\in N_k}e^{\frac{1}{\tau_k}\mu_l})}}{\sum_{j=1}^K(e^{\tau_j\ln(\sum_{l\in N_j}e^{\frac{1}{\tau_j}\mu_l})})} pi=lNkeτk1μleτk1μij=1K(eτjln(lNjeτj1μl))eτkln(lNkeτk1μl)

其中 τ k \tau_k τk是相异参数,即刻画在一个蔟中各个商品之间的相异程度。当 τ k = 1 ,   ∀ k = 1 , … , K \tau_k=1,\ \forall k=1,\dots,K τk=1, k=1,,K时,该模型就是MNL模型。

1.4 The exponomial choice model(EC)

顾名思义,EC模型的随机项就是服从指数分布,而在这个模型中RUM中的确定项被当作时每个人对于不同选择的理想效用。则由于外界因素会导致该选择的效用下降,因此此时随机项前面为负号。消费者对不同选择有一个排序,

假设 μ 1 ≤ ⋯ ≤ μ n ,   ϵ i   ∀ i = 1 , … , n \mu_1\leq\cdots\leq\mu_n,\ \epsilon_i\ \forall i=1,\dots,n μ1μn, ϵi i=1,,n服从参数为 λ \lambda λ的指数分布。那么,选择 i i i的概率可以描述为:
p i = e x p [ − λ ∑ j = i n ( μ j − μ i ) ] n − i + 1 − ∑ k = 1 i − 1 e x p [ − λ ∑ j = k n ( μ j − μ k ) ] ( n − k ) ( n − k + 1 ) p_i=\frac{exp\left[-\lambda\sum_{j=i}^n(\mu_j-\mu_i)\right]}{n-i+1}-\sum_{k=1}^{i-1}\frac{exp\left[-\lambda\sum_{j=k}^n(\mu_j-\mu_k)\right]}{(n-k)(n-k+1)} pi=ni+1exp[λj=in(μjμi)]k=1i1(nk)(nk+1)exp[λj=kn(μjμk)]

这种在选择模型中减去一个指数修正项的方法首次被Daganzo(1979)年提出,并将模型命名为NED(negative exponential distribution)模型,但Daganzo只提供了一般选择概率公式,其他相关的模型结构、估计等问题都遗留下来。之后Alptekinoğlu(2015)才对该模型进行了总结概括

2. representative agent model

RAM模型与RUM模型变量设定和模型建立方式完全不同。RAM模型假设消费者是同质的,因此只需要研究一个消费者的决策行为,同时,经济学家认为,尽管消费者有所不同,一定存在一个具有代表性的代理人,这个消费者就被当作代表性代理人。RAM模型就是研究一个个体或一些代表性个体的行为代替整体。定义该代表在n各替代品中的选择向量为 x = ( x 1 , … , x n ) ,   ∑ i = 1 n x i = 1 \bm{x}=(x_1,\dots,x_n),\ \sum_{i=1}^nx_i=1 x=(x1,,xn), i=1nxi=1,其中 x i x_i xi可以取 [ 0 , 1 ] [0,1] [0,1]之间任意值。另外,为了做出选择,消费者会考虑预期的效用,同时倾向于某种程度的多元化。代表性代理人模型需要解决的就是以下优化问题:

max ⁡ ∑ i = 1 n x i = 1 μ T x − V ( x ) \max_{\sum_{i=1}^nx_i=1}\bm{\mu}^T\bm{x}-V(\bm{x}) i=1nxi=1maxμTxV(x)

其中 μ = ( μ 1 , … , μ n ) \bm{\mu}=(\mu_1,\dots,\mu_n) μ=(μ1,,μn)是每个替代品的确定性效用,与随即效用模型的确定性部分类似。 V ( x ) V(\bm{x}) V(x)是用以奖励多元化的正则项。相应的,在RAM模型下,消费者选择每一个替代商品的概率向量可以定义为:

p = arg ⁡ max ⁡ { μ T x − V ( x ) } \bm{p}=\arg\max \left\lbrace\bm{\mu}^T\bm{x}-V(\bm{x})\right\rbrace p=argmax{μTxV(x)}

但是显然,代表性代理人模型的代理人假设是有弊端的。Kirman(1992)就对该模型持批评态度,认为RAM模型容易忽视个体之间的差异,导致合成谬误。一个有效的替代模型是ABM(Agent-based simulation model),一种仿真模型。另一个是DSGE (dynamic stochastic general equilibrium )。
另外由于总是不可能明确地表明异质性,所以总得来说,代表性代理人模型是非常重要的基础模型。

3. semi-parametric choice model

SCM模型由Natarajan(2009)等提出,与RUM模型中随机项服从一个确定的分布,在半参数选择模型中,随机项 ϵ \epsilon ϵ有可能仅已知边际分布或者矩条件,因此服从一类分布集合 Θ \Theta Θ。那么与RUM类似,选择 i i i的概率可以表示为:

p i = P θ ∗ ( i = arg ⁡ max ⁡ k ( μ k + ϵ k ) ) p_i=P_{\theta^*}(i=\arg\max_k(\mu_k+\epsilon_k)) pi=Pθ(i=argkmax(μk+ϵk))
其中 θ ∗ ∈ arg ⁡ max ⁡ θ ∈ Θ E ( max ⁡ k ( μ k + ϵ k ) ) \theta^*\in\arg\max_{\theta\in\Theta}E(\max_k(\mu_k+\epsilon_k)) θargmaxθΘE(maxk(μk+ϵk))

θ ∗ \theta^* θ可以看作是在集合 Θ \Theta Θ中能够最大期望效用的分布,可以通过规范一些边界条件防止过度乐观。Natarajan et al.由此提出了MDM(marginal distribution model)和MMM(marginal moment model),MDM假设所有的分布都有确定的边际分布,而MMM假设所有的分布都有确定的边际分布的一阶矩和二阶矩。之后,Mishra(2012)等又提出了CMM(cross moment model),假设所有分布都已知一阶矩和二阶方差协方差矩阵。
本质上,半参数选择模型可以被看作是随即效用模型的延伸。

4. 其他模型

4.1 The Markov chain-based choice model

基于Markov chain的选择模型假设每个人在心中对各产品有一个确定的排序(包括不买这个选择),当一个消费者到达,会先选择自己心中排序第一的产品,如果这个产品不存在,那么他会按照他既定的Markov转移矩阵以一定的概率转移到其他选择,直到选择到他想要且能够购买的产品或者不买离开。该算法的复杂程度为 O ( n ) \mathcal{O}(n) O(n) n n n为商品数量。

假设有n中商品 N = { 1 , 2 , … , n } \mathcal{N}=\left\lbrace1,2,\dots,n\right\rbrace N={1,2,,n},其中只有 S ⊆ N \mathcal{S}\subseteq\mathcal{N} SN可以选择的商品,其他商品皆不可选。此外,消费者还有选择不买的权利,因此 S + = S ∪ { 0 } \mathcal{S}_+=\mathcal{S}\cup\left\lbrace0\right\rbrace S+=S{0}为消费者的可选空间,当消费者选择的商品 j ∉ S + j\not\in\mathcal{S}_+ jS+就会转移到其他选择,直到买到或者离开停止。对任意 j ∈ S + j\in\mathcal{S}_+ jS+ π ( j , S ) \pi(j,S) π(j,S)表示每个商品被选择的概率。

假设一个最希望购买 i ∈ N ⊆ { 0 } i\in\mathcal{N}\subseteq\left\lbrace0\right\rbrace iN{0}的消费者到达的概率为 λ i = π ( i , N ) \lambda_i=\pi(i,\mathcal{N}) λi=π(i,N)并购买商品 i i i。如果 i i i不可购买,用 ρ i j ,   i ≠ j , i ∈ N , j ∈ N ∪ { 0 } \rho_{ij},\ i\not=j, i\in\mathcal{N},j\in\mathcal{N}\cup\left\lbrace0\right\rbrace ρij, i=j,iN,jN{0}表示从商品 i i i转移到商品 j j j的概率,其中 i i i是更希望的得到的产品但 i ∉ S + i\not\in\mathcal{S}_+ iS+。该转移概率可以从数据模拟中获得,一旦转移至商品 j j j,那消费者的行为和那些一开始就选择商品 j j j的人一致。这样只要有消费者到达概率和转移矩阵,我们就可以近似估计出消费者行为。

例如,如果对于 S = { N ∖ { i } ∣ i = 1 , … , n } \mathcal{S}=\left\lbrace\mathcal{N}\setminus\left\lbrace i\right\rbrace|i=1,\dots,n\right\rbrace S={N{i}i=1,,n},我们可以通过下式估计出到达到达概率和转移矩阵:
λ i = π ( i , N ) \lambda_i=\pi(i,\mathcal{N}) λi=π(i,N)
ρ i j = { 1 , if  i = 0 , j = 0 ; π ( j , N ∖ { i } ) − π ( j , N ) π ( j , N ) , if  i ∈ N , j ∈ N ∪ { 0 } ,   i ≠ j ; 0 , otherwise . \rho_{ij}=\begin{cases} 1,&\text{if}\ i=0,j=0;\\ \frac{\pi(j,\mathcal{N}\setminus\left\lbrace i\right\rbrace)-\pi(j,\mathcal{N})}{\pi(j,\mathcal{N})},&\text{if}\ i\in\mathcal{N},j\in\mathcal{N}\cup\left\lbrace0\right\rbrace,\ i\not=j;\\ 0,&\text{otherwise}. \end{cases} ρij=1,π(j,N)π(j,N{i})π(j,N),0,if i=0,j=0;if iN,jN{0}, i=j;otherwise.
其中 π ( j , N ∖ { i } ) − π ( j , N ) \pi(j,\mathcal{N}\setminus\left\lbrace i\right\rbrace)-\pi(j,\mathcal{N}) π(j,N{i})π(j,N)表示由于商品 i i i不可得之后商品 j j j增加得概率。在实际模型中, ρ i j \rho_{ij} ρij与设定得集合 S \mathcal{S} S有关,如果我们已经有数据直到在集合 S \mathcal{S} S S ∖ { i } \mathcal{S}\setminus\left\lbrace i\right\rbrace S{i}下的选择概率,那么就可以估计转移概率:
ρ i j = τ ⋅ π ( j , S ∖ { i } ) − π ( j , S ) π ( j , S ) \rho_{ij}=\tau\cdot\frac{\pi(j,\mathcal{S}\setminus\left\lbrace i\right\rbrace)-\pi(j,\mathcal{S})}{\pi(j,\mathcal{S})} ρij=τπ(j,S)π(j,S{i})π(j,S)
实际上基于Markov chain的选择模型经常用于选品优化,并且能在多项式时间内求解。在选品优化问题中目标函数就是最大化期望收益:
max ⁡ S ⊆ { 1 , … , n } r ( S ) = ∑ j ∈ S r j ⋅ π ( j , S ) \max_{\mathcal{S}\subseteq\left\lbrace1,\dots,n\right\rbrace}r(\mathcal{S})=\sum_{j\in\mathcal{S}}r_j\cdot\pi(j,\mathcal{S}) S{1,,n}maxr(S)=jSrjπ(j,S)
其中 r j r_j rj是商品 j j j单位收益, π ( j , S ) \pi(j,\mathcal{S}) π(j,S)是在集合 S \mathcal{S} S下购买商品 j j j的概率。很显然该目标函数很难求解,但可以在 O ( log ⁡ 1 / ϵ ) \mathcal{O}(\log1/\epsilon) O(log1/ϵ)迭代下得到一个收益在最优收益 ϵ \epsilon ϵ内的产品组合,只要选取足够小的 ϵ \epsilon ϵ就可以在多项式时间内逼近最优决策。

4.2 The two-stage choice model

Jagabathula(2013)提出了两阶段选择模型,第一阶段消费者考虑与价格(或其他因素)无关,对所有产品(包括选择‘不买’)进行排序,得到基础偏好集合;第二阶段消费者在基础偏好集合中再根据与价格(或其他因素)和潜在消费者偏好相关进行挑选,得到一个更小的集合。例如,可以将第一阶段当作是消费者在不考虑价格的情况下,对所有产品的排序,很显然质量高的产品排在质量低的产品前面。但当考虑价格时,由于消费者预算问题、打折或者其他与价格相关的事件,消费者会排除一些产品(如价格高的产品),得到一个更小的选择集合,一旦这个集合确定,消费者只需要选择质量最高的产品即可,当外界因素不断变化,消费者对产品偏好排序不会变化,但根据外界因素“修剪”过的集合会发生变化。

假设按照商品价格进行排序 p 1 ≤ p 1 ≤ ⋯ ≤ p n ≤ p n + 1 p_1\leq p_1\leq \cdots\leq p_n\leq p_{n+1} p1p1pnpn+1,以此为基础设定消费者的WTP(willing to pay) g [ p i , p i + 1 ) g\left[p_i,p_{i+1}\right) g[pi,pi+1),表示消费者的WTP落在 [ p i , p i + 1 ) \left[p_i,p_{i+1}\right) [pi,pi+1)区间内。 S i \mathcal{S}_i Si表示在该WTP下可以购买的商品集合 { 1 , 2 , … , i } \left\lbrace1,2,\dots,i\right\rbrace {1,2,,i},那么消费者选择商品 i i i的概率为
p i = ∑ j = i n g [ p j , p j + 1 ) P λ ( i ∣ S j ) p_i=\sum_{j=i}^ng\left[p_j,p_{j+1}\right)P_\lambda(i|\mathcal{S}_j) pi=j=ing[pj,pj+1)Pλ(iSj)
其中, λ \lambda λ表示偏好排序的分布, P λ ( i ∣ S j ) P_\lambda(i|\mathcal{S}_j) Pλ(iSj)表示在 λ \lambda λ规则下,在 S j \mathcal{S}_j Sj的可选集合中选择购买商品 i i i的概率。很显然需要消费者预算大于商品 i i i的价格,才有可能购买商品 i i i

5. 各模型之间的关系

研究选品优化或者收益管理一个很大问题就是选择离散选择模型。具体使用哪个模型才能刻画需要的行为,可能存在适用的模型并不能进行有效的处理,能进行有效处理的模型不能很好的解释现实意义。因此研究各模型在数学形式上的关系非常重要。

Andreson(1988)等证明一个参数为 η \eta η的MNL模型的选择概率与正则项 V ( x ) = η ∑ i = 1 n x i log ⁡ x i V(\bm{x})=\eta\sum_{i=1}^nx_i\log x_i V(x)=ηi=1nxilogxi的代表性代理人模型选择概率相同,也就是我们可以将MNL模型的选择概率写成:
p i = arg ⁡ max ⁡ { μ T x − η ∑ i = 1 n x i log ⁡ x i ∣ ∑ i = 1 n x i = 1 } p_i=\arg\max\left\lbrace\bm{\mu}^T\bm{x}-\eta\sum_{i=1}^nx_i\log x_i\bigg|\sum_{i=1}^nx_i=1\right\rbrace pi=argmax{μTxηi=1nxilogxii=1nxi=1}
Hofbauer和Sandholm(2002)将这个结论扩展至整个随机效用模型。他们证明任意随机项是连续分布的随即效用模型,都能够用一个代表性代理人模型给出相同的选择概率。但是反过来就不一定能实现,他们证明了,当可选择商品数量 n ≥ 4 n\geq4 n4时,不存在一个随机效用函数的选择概率与正则项为 V ( x ) = − ∑ i = 1 n log ⁡ x i V(\bm{x})=-\sum_{i=1}^n\log x_i V(x)=i=1nlogxi的代表性代理人模型的选择概率相同。也就是,RAM模型完全包含RUM模型。

Natarajan(2009)等证明MDM模型可以与一个RAM模型等价。假设 Θ = { θ ∣ ϵ i ∼ F i ( ⋅ ) , ∀ i } \Theta=\left\lbrace\theta|\epsilon_i\sim F_i(\cdot),\forall i\right\rbrace Θ={θϵiFi(),i},其中 F i ( ⋅ ) F_i(\cdot) Fi()是一直连续分布,那么其选择概率除了用MDM形式表示,还能够写成
p i = arg ⁡ max ⁡ x { μ T x + ∑ i = 1 n ∫ 1 − x i 1 F i − 1 ( t ) d t ∣ ∑ i = 1 n x i = 1 } p_i=\arg\max_x\left\lbrace\bm{\mu}^T\bm{x}+\sum_{i=1}^n\int_{1-x_i}^1F_i^{-1}(t)dt\bigg|\sum_{i=1}^nx_i=1\right\rbrace pi=argxmax{μTx+i=1n1xi1Fi1(t)dti=1nxi=1}
同时他们也证明了,MMM模型也能够用一个RAM模型表示。不失一般性地,假设所有随机项的边际期望都为0,那么假设随机项 ϵ i \epsilon_i ϵi的方差为 σ i \sigma_i σi,那么选择概率可以写为
p i = arg ⁡ max ⁡ x { μ T x + ∑ i = 1 n σ i x i ( 1 − x i ) ∣ ∑ i = 1 n x i = 1 } p_i=\arg\max_x\left\lbrace\bm{\mu}^T\bm{x}+\sum_{i=1}^n\sigma_i\sqrt{x_i(1-x_i)}\bigg|\sum_{i=1}^nx_i=1\right\rbrace pi=argxmax{μTx+i=1nσixi(1xi) i=1nxi=1}
之后Ahipasaoglu(2013)等证明了CMM也可以用一个RAM表示。至此,所有已经研究过的半参数模型都被证明可以用RAM描述。

Feng(2015)等提出了一个新的选择模型框架,称为welfare-based选择模型。一个拥有单调性、转移不变性以及凸性的函数 w ( μ ) w(\bm{\mu}) w(μ),就被称为一个选择模型的收益函数。如果这个函数可微,那么选择模型的概率可以表示为 p = ∇ w ( μ ) \bm{p}=\nabla w(\bm{\mu}) p=w(μ)。用这种方式定义的离散选择模型可以证明与RAM和半参数选择模型之间两两等价,且完全包含RUM模型。与RUM模型之间的区别仅是收益函数各阶偏微分的差别,welfare-based选择模型仅对一、二阶偏导有要求,而RUM要求所有高阶偏导符号不断交换。由此将离散选择模型大的分类整合在一起,研究清楚了各选择模型之间的关系。

另外,Blanchet(2013)等证明基于Markov chain的离散选择模型在数据上是任一随机效用模型真实选择概率的逼近。Jagabathula(2013)等证明两阶段选择模型包含随即效用模型。

参考文献

[1] Ahipasaoglu S D, Li X, Natarajan K. A convex optimization approach for computing correlated choice probabilities with many alternatives[J]. IEEE Transactions on Automatic Control, 2018, 64(1): 190-205.
[2] Alptekinoglu, A., J. Temple. 2013. The exponomial choice model: A new alternative for assortment and price optimization. Working paper.
[3] Anderson S P, De Palma A, Thisse J F. A representative consumer theory of the logit model[J]. International Economic Review, 1988: 461-466.
[4] Blanchet, J., G. Gallego, V. Goyal. 2013. A Markov chain approximation to choice modeling. Working paper.
[5] Daganzo C. Multinomial probit: the theory and its application to demand forecasting[M]. Elsevier, 2014.
[6] Feng G, Li X, Wang Z. Analysis of discrete choice models: A welfare-based framework[J]. arXiv preprint arXiv:1503.01854, 2015.
[7] Gallego, G., R. Ratliff, S. Shebalov. 2014. A general attraction model and sales-based linear program for network revenue management under customer choice. Operations Research.
[8] Heiss, F. Specification(s) of Nested Logit Models. Mannheimer Forschungsinstitut Okonomie und Demographischer Wandel, Mannheim, Germany, 2002
[9] Kirman A P. Whom or what does the representative individual represent?[J]. Journal of economic perspectives, 1992, 6(2): 117-136.
[10] McFadden, D. 1974. Conditional logit analysis of qualitative choice behavior. P. Zarembka, ed., Frontiers in Econometrics. Academic Press, 105-142.
[11] McFadden, Daniel, et al. 1978. Modelling the choice of residential location. Institute of Transportation Studies, University of California.
[12] McFadden, D. 1980. Econometric models for probabilistic choice among products. The Journal of Business 53(3) 13-29
[13] McFadden, D., K. Train. 2000. Mixed MNL models for discrete responses. Journal of Applied Econometrics 15 447-470.
[14] Mishra V K, Natarajan K, Tao H, et al. Choice prediction with semidefinite optimization when utilities are correlated[J]. IEEE Transactions on Automatic Control, 2012, 57(10): 2450-2463.
[15] Natarajan, K., M. Song, C.-P. Teo. 2009. Persistency model and its applications in choice modeling. Management Science 55(3) 453-469.
[16] Small K A. A discrete choice model for ordered alternatives[J]. Econometrica: Journal of the Econometric Society, 1987: 409-424.
[17] Thurstone, L. 1927. A law of comparative judgment. Psychological Review 34(4) 273-286.
[18] Train, K. E. 2009. Discrete Choice Methods with Simulation. Cambridge University Press.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值