分布函数相关


f ( ⋅ ) f(\cdot) f() is a PDF with support ( 0 , a ) (0,a) (0,a). a a a being possibly + ∞ +\infty +, CDF is F ( ⋅ ) F(\cdot) F()

关于期望的有用表达式

E [ X ] = ∫ 0 a x f ( x ) d x = ∫ 0 a x d F ( x ) = ∫ 0 a ( 1 − F ( x ) ) d x E[X]=\int_0^axf(x)dx=\int_0^axdF(x)=\int_0^a(1-F(x))dx E[X]=0axf(x)dx=0axdF(x)=0a(1F(x))dx
前两个等号很容易得出,下面证明:
proof:
∫ 0 a x d F ( x ) = − ∫ 0 a x d ( 1 − F ( x ) ) = − x ( 1 − F ( x ) ) ∣ 0 a + ∫ 0 a ( 1 − F ( x ) ) d x = ∫ 0 a ( 1 − F ( x ) ) d x \begin{aligned} \int_0^axdF(x)&=-\int_0^axd(1-F(x))\\ &=-x(1-F(x))|_0^a+\int_0^a(1-F(x))dx\\ &=\int_0^a(1-F(x))dx \end{aligned} 0axdF(x)=0axd(1F(x))=x(1F(x))0a+0a(1F(x))dx=0a(1F(x))dx
第二个等式的第一个式子为0。实际上用的是分布积分的内容。 □ \Box
另外根据相似的证明,可以得到
∫ 0 b x f ( x ) d x = b F ( b ) − ∫ 0 b F ( x ) d x , ∀ b < a \int_0^bxf(x)dx=bF(b)-\int_0^bF(x)dx, \forall b<a 0bxf(x)dx=bF(b)0bF(x)dx,b<a

联合分布函数的导数和偏导数

假设两个连续随机变量 X , Y X,Y X,Y, 联合分布函数定义为
F X , Y ( x , y ) = P ( X ≤ x , Y ≤ y ) = ∫ − ∞ x ∫ − ∞ y f X , Y ( t 1 , t 2 ) d t 1 d t 2 F_{X,Y}(x,y)=P(X\leq x,Y\leq y)=\int_{-\infty}^x\int_{-\infty}^y f_{X,Y}(t_1,t_2)d t_1 dt_2 FX,Y(x,y)=P(Xx,Yy)=xyfX,Y(t1,t2)dt1dt2
众所周知
∂ 2 F X , Y ( x , y ) ∂ x ∂ y = f X , Y ( x , y ) \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y}=f_{X,Y}(x,y) xy2FX,Y(x,y)=fX,Y(x,y)
偏导数
∂ F X , Y ( x , y ) ∂ x = ∫ − ∞ y f X , Y ( x , t ) d t = ∫ − ∞ y f Y ∣ X = x ( t ) f X ( x ) d t = ∫ − ∞ y f Y ∣ X = x ( t ) d t f X ( x ) = F Y ∣ X = x ( y ) f X ( x ) = F Y ( y ) f X ∣ Y ≤ y ( x ) \begin{aligned} \frac{\partial F_{X,Y}(x,y)}{\partial x}&=\int_{-\infty}^y f_{X,Y}(x,t) dt \\ &=\int_{-\infty}^y f_{Y|X=x}(t)f_X(x) dt\\ &=\int_{-\infty}^y f_{Y|X=x}(t)dt f_X(x) \\ &=F_{Y|X=x}(y)f_X(x)\\ &=F_Y(y)f_{X|Y\leq y}(x) \end{aligned} xFX,Y(x,y)=yfX,Y(x,t)dt=yfYX=x(t)fX(x)dt=yfYX=x(t)dtfX(x)=FYX=x(y)fX(x)=FY(y)fXYy(x)
最后一行是因为
∫ − ∞ y f X , Y ( x , t ) d t = ∫ − ∞ y f Y ( t ) f X ∣ Y = t ( x ) d t \int_{-\infty}^y f_{X,Y}(x,t) dt=\int_{-\infty}^y f_Y(t)f_{X|Y=t}(x) dt yfX,Y(x,t)dt=yfY(t)fXY=t(x)dt

高斯分布相关

高斯分布 (Gaussian/Normal Distribution)

PDF:
f ( x ; μ , σ ) = 1 σ 2 π e − 1 2 ( x − μ σ ) 2 f(x;\mu,\sigma)=\frac{1}{\sigma \sqrt{2\pi}}e^{-\frac{1}{2} (\frac{x-\mu}{\sigma})^2} f(x;μ,σ)=σ2π 1e21(σxμ)2
CDF:
F ( x ) = Φ ( x − μ σ ) F(x)=\Phi(\frac{x-\mu}{\sigma}) F(x)=Φ(σxμ)

Rectified Gaussian Distribution

PDF:
h ( x ) = { f ( x ) ,    x > 0 0 ,    x ≤ 0 h(x)=\left\{ \begin{aligned} f(x), & \ \ x>0 \\ 0, & \ \ x\leq 0 \end{aligned} \right. h(x)={f(x),0,  x>0  x0
CDF:
H ( x ) = Φ ( x − μ σ ) − Φ ( − μ σ ) H(x)=\Phi(\frac{x-\mu}{\sigma})-\Phi(-\frac{\mu}{\sigma}) H(x)=Φ(σxμ)Φ(σμ)

Truncated Gaussian Distribution

如果设定的范围是 [a,b]
PDF:
g ( x ; μ , σ , a , b ) = { f ( x ) Φ ( b − μ σ ) − Φ ( a − μ σ ) ,    x ∈ [ a , b ] 0 ,    o t h e r w i s e g(x;\mu,\sigma,a,b)=\left\{ \begin{aligned} \frac{f(x)}{\Phi(\frac{b-\mu}{\sigma})-\Phi(\frac{a-\mu}{\sigma})}, & \ \ x\in[a,b]\\ 0,& \ \ otherwise \end{aligned} \right. g(x;μ,σ,a,b)=Φ(σbμ)Φ(σaμ)f(x),0,  x[a,b]  otherwise
三者的区别:
图源:Bayesian non-negative factor analysis for reconstructing transcription factor mediated regulatory networks

Folded Gaussian distribution

PDF:
l ( x ; μ , σ ) = { 1 σ 2 π e − 1 2 ( x − μ σ ) 2 + 1 σ 2 π e − 1 2 ( x + μ σ ) 2 ,    x ≥ 0 0 ,    o t h e r w i s e l(x;\mu,\sigma)=\left\{ \begin{aligned} \frac{1}{\sigma \sqrt{2\pi}}e^{-\frac{1}{2} (\frac{x-\mu}{\sigma})^2}+\frac{1}{\sigma \sqrt{2\pi}}e^{-\frac{1}{2} (\frac{x+\mu}{\sigma})^2},&\ \ x\geq0\\ 0, & \ \ otherwise \end{aligned} \right. l(x;μ,σ)=σ2π 1e21(σxμ)2+σ2π 1e21(σx+μ)2,0,  x0  otherwise

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值