傅里叶级数详解

首先,推荐一个有意思的视频:【谜之舒适】12分钟的傅立叶级数动画
在这里插入图片描述


下面进入正文。

周期为 2 π 2\pi 2π的方波函数:

z ( t ) = { − 1 , − π ≤ t < 0 1 , 0 ≤ t < π z(t)=\begin{cases}-1,-\pi\le t\lt 0\\\quad 1,\quad0\le t\lt \pi\end{cases} z(t)={1πt<010t<π

可以展开为三角函数形式的傅里叶级数:

4 π [ sin ⁡ t + 1 3 sin ⁡ 3 t + ⋯ + 1 2 n + 1 sin ⁡ ( 2 n + 1 ) t + ⋯   ] \frac{4}{\pi}\left[\sin t+\frac{1}{3} \sin 3 t+\cdots+\frac{1}{2 n+1} \sin (2 n+1) t+\cdots\right] π4[sint+31sin3t++2n+11sin(2n+1)t+]

下图为三角函数形式的傅里叶级数合成方波函数(红色​)的示意图:

在这里插入图片描述

为什么可以呢?接下来,我们将详解它的原理:
在这里插入图片描述

下文主要分为两个小节,第一节首先介绍了向量的正交分解,然后过渡到函数的正交分解并得出广义傅里叶级数这一概念。基于广义傅里叶级数,第二节首先解释周期函数是如何展开成三角函数的傅里叶级数的,然后由辅助角公式推出其余弦形式,最后根据欧拉公式得出复指数形式的傅里叶级数。

函数分解为正交函数

1 向量的正交分解

(1)向量正交

若两向量 V 1 V_1 V1 V 2 V_2 V2正交,即夹角为90°:
在这里插入图片描述

那么,这两正交向量的内积为零
V 1 → ⋅ V 2 → = ∣ V 1 ∣ ⋅ ∣ V 2 ∣ cos ⁡ 9 0 ∘ = 0 \overrightarrow{V_{1}}\cdot \overrightarrow{V_{2}}=|V_{1}| \cdot |V_{2}| \cos 90^{\circ}=0 V1 V2 =V1V2cos90=0

(2)正交向量集

由两两正交的向量组成的向量集合。

(3)非正交向量的近似表示及误差
在这里插入图片描述

∣ c 12 V 2 ∣ = ∣ V 1 ∣ cos ⁡ θ |c_{12}V_{2}|=|V_{1}| \cos \theta c12V2=V1cosθ

得:

c 12 = ∣ V 1 ∣ cos ⁡ θ ∣ V 2 ∣ = ∣ V 1 ∣ ⋅ ∣ V 2 ∣ cos ⁡ θ ∣ V 2 ∣ ⋅ V 2 ∣ = V 1 → ⋅ V 2 → V 2 → ⋅ V 2 → c_{12}= \frac{|V_{1}| \cos \theta}{|V_{2}|}= \frac{|V_{1}| \cdot |V_{2}| \cos \theta}{|V_{2}| \cdot V_{2}|}= \frac{\overrightarrow{V_{1}}\cdot \overrightarrow{V_{2}}}{\overrightarrow{V_{2}}\cdot \overrightarrow{V_{2}}} c12=V2V1cosθ=V2V2V1V2cosθ=V2 V2 V1 V2

用与 V 2 V_2 V2成比例的向量 c 12 V 2 c_{12}V_2 c12V2近似地表示 V 1 V_1 V1,则误差向量

V e → = V 1 → − c 12 V 2 → \overrightarrow{V_{e}}= \overrightarrow{V_{1}}-c_{12}\overrightarrow{V_{2}} Ve =V1 c12V2

显然,当两向量 V 1 V_1 V1 V 2 V_2 V2正交时, c 12 = 0 c_{12}=0 c12=0,即 V 1 → ⋅ V 2 → = 0 \overrightarrow{V_{1}}·\overrightarrow{V_{2}}=0 V1 V2 =0

(4)向量正交分解:任意 N N N维向量可由 N N N维正交坐标系表示。
在这里插入图片描述

c 1 = ∣ V ∣ cos ⁡ θ 1 ∣ V 1 ∣ = V → ⋅ V → 1 V 1 → ⋅ V → 1 c_{1}= \frac{|V| \cos \theta _{1}}{|V_{1}|}= \frac{\overrightarrow{V}\cdot \overrightarrow{V}_{1}}{\overrightarrow{V_{1}}\cdot \overrightarrow{V}_{1}} c1=V1Vcosθ1=V1 V 1V V 1
c 2 = ∣ V ∣ cos ⁡ θ 2 ∣ V 2 ∣ = V → ⋅ V 2 → V 2 → ⋅ V 2 → c_{2}= \frac{|V| \cos \theta _{2}}{|V_{2}|}= \frac{\overrightarrow{V}\cdot \overrightarrow{V_{2}}}{\overrightarrow{V_{2}}\cdot \overrightarrow{V_{2}}} c2=V2Vcosθ2=V2 V2 V V2

在这里插入图片描述

c 1 = ∣ V ∣ cos ⁡ θ 1 ∣ V 1 ∣ = V → ⋅ V → 1 V 1 → ⋅ V → 1 c_{1}= \frac{|V| \cos \theta _{1}}{|V_{1}|}= \frac{\overrightarrow{V}\cdot \overrightarrow{V}_{1}}{\overrightarrow{V_{1}}\cdot \overrightarrow{V}_{1}} c1=V1Vcosθ1=V1 V 1V V 1
c 2 = ∣ V ∣ cos ⁡ θ 2 ∣ V 2 ∣ = V → ⋅ V 2 → V 2 → ⋅ V 2 → c_{2}= \frac{|V| \cos \theta _{2}}{|V_{2}|}= \frac{\overrightarrow{V}\cdot \overrightarrow{V_{2}}}{\overrightarrow{V_{2}}\cdot \overrightarrow{V_{2}}} c2=V2Vcosθ2=V2 V2 V V2

c 3 = ∣ V ∣ cos ⁡ θ 3 ∣ V 3 ∣ = V → ⋅ V 3 → V 3 → ⋅ V 3 → c_{3}= \frac{|V| \cos \theta _{3}}{|V_{3}|}= \frac{\overrightarrow{V}\cdot \overrightarrow{V_{3}}}{\overrightarrow{V_{3}}\cdot \overrightarrow{V_{3}}} c3=V3Vcosθ3=V3 V3 V V3

推广到 n n n维空间: n n n维空间的任一向量 V V V,可以精确地表示为 n n n个正交向量的线性组合, 即

V → = c 1 V 1 → + c 2 V 2 → + ⋯ + c r V r → + ⋯ + c n V → n \overrightarrow{V}=c_{1}\overrightarrow{V_{1}}+c_{2}\overrightarrow{V_{2}}+ \cdots +c_{r}\overrightarrow{V_{r}}+ \cdots +c_{n}\overrightarrow{V}_{n} V =c1V1 +c2V2 ++crVr ++cnV n

式中, V i → ⋅ V j → = 0 ( i ≠ j ) \overrightarrow{V_i}·\overrightarrow{V_j}=0 (i≠j) Vi Vj =0(i=j),第 r r r 个分量的系数

c r = V → ⋅ V r → V r → ⋅ V → r c_{r}= \frac{\overrightarrow{V}\cdot \overrightarrow{V_{r}}}{\overrightarrow{V_{r}}\cdot\overrightarrow{V}_{r}} cr=Vr V rV Vr

下面我们将向量空间正交分解的概念可推广到函数空间:在函数空间找到若干个相互正交的函数作为基本函数,使得函数空间中任意函数均可表示成它们的线性组合。

2 函数的正交分解

(1) 函数正交

定义

( t 1 , t 2 ) (t_1,t_2) (t1,t2)区间的两个函数 φ 1 ( t ) \varphi_1(t) φ1(t) φ 2 ( t ) \varphi_2(t) φ2(t),若满足
∫ t 1 t 2 φ 1 ( t ) φ 2 ∗ ( t ) d t = 0 , ∗ 表 示 共 轭 \int_{t_{1}}^{t_{2}}\varphi _{1}(t)\varphi _{2}^*(t)dt=0,*表示共轭 t1t2φ1(t)φ2(t)dt=0

即两函数内积为0,则称 φ 1 ( t ) \varphi _{1}(t) φ1(t) φ 2 ( t ) \varphi _{2}(t) φ2(t)在区间 ( t 1 , t 2 ) (t_1,t_2) (t1,t2)正交。

备注:实数函数的共轭是其本身。

(2)正交函数集

n n n个函数 φ 1 ( t ) , φ 2 ( t ) , . . . , φ n ( t ) \varphi_{1}(t), \varphi_{2}(t),...,\varphi _{n}(t) φ1(t),φ2(t),...,φn(t)构成一个函数集,当这些函数在区间 ( t 1 , t 2 ) (t_1,t_2) (t1,t2)内满足
∫ t 1 t 2 φ 1 ( t ) φ 2 ∗ ( t ) d t = { 0 , i ≠ j K i ≠ 0 , i = j \int_{t_{1}}^{t_{2}}\varphi _{1}(t)\varphi _{2}^*(t)dt=\left\{ \begin{matrix} 0, \quad i \neq j \\ K_{i}\neq 0, \quad i=j \\ \end{matrix} \right. t1t2φ1(t)φ2(t)dt={0,i=jKi=0,i=j
则称此函数集为区间 ( t 1 , t 2 ) (t_1,t_2) (t1,t2)上的正交函数集。

如果 K i = 1 K_i=1 Ki=1,称为标准正交函数集

(3)完备正交函数集

如果在正交函数集 { φ 1 ( t ) , φ 2 ( t ) , . . . , φ n ( t ) } \{\varphi_{1}(t), \varphi_{2}(t),...,\varphi _{n}(t) \} {φ1(t),φ2(t),...,φn(t)}之外,不存在任何函数 φ ( t ) ( ≠ 0 ) \varphi(t)(\not=0) φ(t)(=0)满足:
∫ t 1 t 2 φ ( t ) φ i ∗ ( t ) d t = 0 , ( i = 1 , 2 , ⋯   , n ) \int_{t_{1}}^{t_{2}}\varphi(t)\varphi _{i}^{*}(t)dt=0,(i=1,2, \cdots ,n) t1t2φ(t)φi(t)dt=0(i=1,2,,n)

则称此函数集为完备正交函数集


(4)函数的正交分解

设有 n n n个函数 φ 1 ( t ) , φ 2 ( t ) , ⋯   , φ n ( t ) \varphi_{1}(t), \varphi _{2}(t), \cdots , \varphi _{n}(t) φ1(t),φ2(t),,φn(t)在区间 ( t 1 , t 2 ) (t_1,t_2) (t1,t2)构成要给正交函数空间。将任一函数 f ( t ) f(t) f(t)用这个正交函数的线性组合来近似,可表示为:

f ( t ) ≈ C 1 φ 1 ( t ) + C 2 φ 2 ( t ) + ⋯ + C i φ i ( t ) ⋯ + C n φ n ( t ) = ∑ j = 1 n C j φ j ( t ) f(t)\approx C_{1}\varphi _{1}(t)+C_{2}\varphi _{2}(t)+ \cdots +C_{i}\varphi _{i}(t)\cdots +C_{n}\varphi _{n}(t)= \sum _{j=1}^{n}C_{j}\varphi _{j}(t) f(t)C1φ1(t)+C2φ2(t)++Ciφi(t)+Cnφn(t)=j=1nCjφj(t)

如何找到合适的系数 C i C_i Ci,使得函数与近似函数的误差在 ( t 1 , t 2 ) (t_1,t_2) (t1,t2)最小呢?

我们可以通过最小化均方误差:
ε 2 ‾ = 1 t 2 − t 1 ∫ t 1 t 2 [ f ( t ) − ∑ j = 1 n C j φ j ( t ) ] 2 d t \overline{\varepsilon ^{2}}= \frac{1}{t_{2}-t_{1}}\int _{t_{1}}^{t_{2}}[ f(t)- \sum _{j=1}^{n}C_{j}\varphi _{j}(t)] ^{2}dt ε2=t2t11t1t2[f(t)j=1nCjφj(t)]2dt

求系数 C i C_i Ci求偏导并令偏导等于零:
∂ ε ‾ 2 ∂ C i = ∂ ∂ C i { 1 t 2 − t 1 ∫ t i t i [ f ( t ) − ∑ j = 1 n C j φ j ( t ) ] 2 d t } = 0 \frac{\partial \overline{\varepsilon}^{2}}{\partial C_{i}}= \frac{\partial}{\partial C_{i}}\left\{ \frac{1}{t_{2}-t_{1}}\int _{t_{i}}^{t_{i}}[ f(t)- \sum _{j=1}^{n}C_{j}\varphi _{j}(t)] ^{2}dt \right\} =0 Ciε2=Ci{t2t11titi[f(t)j=1nCjφj(t)]2dt}=0

展开被积函数,并求导,只有两项不为0,写为:
∂ ∂ C i { 1 t 2 − t 1 ∫ t i t [ − 2 C i φ i ∗ ( t ) f ( t ) + C i 2 φ i ( t ) φ i ∗ ( t ) ] d t } = 0 \frac{\partial}{\partial C_{i}}\left\{ \frac{1}{t_{2}-t_{1}}\int _{t_{i}}^{t}\left[ -2C_{i}\varphi _{i}^{*}(t)f(t)+C_{i}^{2}\varphi _{i}(t)\varphi _{i}^{*}(t)\right] dt \right\} =0 Ci{t2t11tit[2Ciφi(t)f(t)+Ci2φi(t)φi(t)]dt}=0

即:
− 2 ∫ t 1 t 2 f ( t ) φ i ∗ ( t ) d t + 2 C i ∫ t 1 t 2 φ i ( t ) φ i ∗ ( t ) d t = 0 -2 \int _{t_{1}}^{t_{2}}f(t)\varphi _{i}^{*}(t)dt+2C_{i}\int _{t_{1}}^{t_{2}}\varphi _{i}(t)\varphi _{i}^{*}(t)dt=0 2t1t2f(t)φi(t)dt+2Cit1t2φi(t)φi(t)dt=0
求得:
C i = ∫ t 1 t 2 f ( t ) φ i ∗ ( t ) d t ∫ t 1 t 2 φ i ( t ) φ i ∗ ( t ) d t = 1 K i ∫ t 1 t 2 f ( t ) φ i ∗ ( t ) d t C_{i}= \frac{\int_{t_1}^{t_{2}}f(t)\varphi _{i}^{*}(t)dt}{\int _{t_1}^{t_{2}}\varphi _{i}(t)\varphi _{i}^{*}(t)dt}= \frac{1}{K_{i}}\int _{t_1}^{t_{2}}f(t)\varphi _{i}^{*}(t)dt Ci=t1t2φi(t)φi(t)dtt1t2f(t)φi(t)dt=Ki1t1t2f(t)φi(t)dt

可以证明,当所取的项数越多,即 n n n越大时,均方误差越小,当 n → ∞ n\rightarrow \infty n时(成为完备正交函数集),均方误差为零。

结论

任意函数可以表示为无穷多个正交函数的和:
f ( t ) = C 1 φ 1 ( t ) + C 2 φ 2 ( t ) + ⋯ + C i φ i ( t ) + ⋯ = ∑ i = 1 ∞ C i φ i ( t ) f(t)=C_{1}\varphi _{1}(t)+C_{2}\varphi _{2}(t)+ \cdots +C_{i}\varphi _{i}(t)+ \cdots = \sum _{i=1}^{\infty}C_{i}\varphi _{i}(t) f(t)=C1φ1(t)+C2φ2(t)++Ciφi(t)+=i=1Ciφi(t)

上式称为函数的正交展开式,也称为广义傅里叶级数

其系数为:
C i = ∫ t 1 t 2 f ( t ) φ i ∗ ( t ) d t ∫ t 1 t 2 φ i ( t ) φ i ∗ ( t ) d t = 1 K i ∫ t 1 t 2 f ( t ) φ i ∗ ( t ) d t C_{i}= \frac{\int_{t_1}^{t_{2}}f(t)\varphi _{i}^{*}(t)dt}{\int _{t_1}^{t_{2}}\varphi _{i}(t)\varphi _{i}^{*}(t)dt}= \frac{1}{K_{i}}\int _{t_1}^{t_{2}}f(t)\varphi _{i}^{*}(t)dt Ci=t1t2φi(t)φi(t)dtt1t2f(t)φi(t)dt=Ki1t1t2f(t)φi(t)dt

备注 ∗ * 表示共轭,实数函数的共轭是其本身。

周期函数的傅里叶级数

在一个周期 ( t 0 , t 0 + T ) ( T = 2 π / Ω ) (t_{0},t_{0}+T)(T=2 \pi / \Omega) (t0,t0+T)(T=2π/Ω)上的完备正交函数集有:

  • 三角函数集: { 1 , cos ⁡ ( n Ω t ) , sin ⁡ ( n Ω t ) , n = 1 , 2 , … } \left\{1, \cos(n \Omega t), \sin(n \Omega t),n=1,2, \ldots \right\} {1,cos(nΩt),sin(nΩt),n=1,2,}

  • 虚指数函数集: { e j n Ω t , n = ± 1 , ± 2 , ⋯   } \left\{e^{jn \Omega t}, n=\pm 1, \pm 2, \cdots \right\} {ejnΩt,n=±1,±2,}

1 周期函数三角形式的傅里叶级数

1.1 三角形式的傅里叶级数

广义傅里叶级数的 φ i ( t ) \varphi_i(t) φi(t)选择三角函数:

{ 1 , cos ⁡ ( n Ω t ) , sin ⁡ ( n Ω t ) , n = 1 , 2 , … } \left\{1, \cos(n \Omega t), \sin(n \Omega t),n=1,2, \ldots \right\} {1,cos(nΩt),sin(nΩt),n=1,2,}

设周期函数 f ( t ) f(t) f(t),其周期为 T T T,角频率(基波频率) Ω = 2 π / T \Omega=2\pi/T Ω=2π/T,当它满足狄里赫利(Dirichlet)条件(见附录)时,可展开为三角形式的傅里叶级数。
f ( t ) = a 0 2 + ∑ n = 1 ∞ a n cos ⁡ ( n Ω t ) + ∑ n = 1 ∞ b n sin ⁡ ( n Ω t ) f(t)= \frac{a_{0}}{2}+ \sum _{n=1}^{\infty}a_{n}\cos(n \Omega t)+ \sum _{n=1}^{\infty}b_{n}\sin(n \Omega t) f(t)=2a0+n=1ancos(nΩt)+n=1bnsin(nΩt)

系数 a n , b n a_n, b_n an,bn称为傅里叶系数

由广义傅里叶级数的系数公式:

C i = ∫ t 1 t 2 f ( t ) φ i ∗ ( t ) d t ∫ t 1 t 2 φ i ( t ) φ i ∗ ( t ) d t = 1 K i ∫ t 1 t 2 f ( t ) φ i ∗ ( t ) d t C_{i}= \frac{\int_{t_1}^{t_{2}}f(t)\varphi _{i}^{*}(t)dt}{\int _{t_1}^{t_{2}}\varphi _{i}(t)\varphi _{i}^{*}(t)dt}= \frac{1}{K_{i}}\int _{t_1}^{t_{2}}f(t)\varphi _{i}^{*}(t)dt Ci=t1t2φi(t)φi(t)dtt1t2f(t)φi(t)dt=Ki1t1t2f(t)φi(t)dt

可以求得 a n , b n a_n,b_n an,bn

(1)求 K i K_i Ki

对于正交函数集中的1(实际上是 cos ⁡ ( 0 Ω t ) = 1 \cos(0\Omega t)=1 cos(0Ωt)=1):
K i = ∫ − T 2 T 2 1 × 1 d t = T K_i=\int _{-\frac{T}{2}}^{\frac{T}{2}}1\times 1dt=T Ki=2T2T1×1dt=T

备注:半角公式: sin ⁡ 2 x 2 = 1 − cos ⁡ x 2 \sin ^{2} \frac{x}{2}=\frac{1-\cos x}{2} sin22x=21cosx cos ⁡ 2 x 2 = 1 + cos ⁡ x 2 \quad \cos ^{2} \frac{x}{2}=\frac{1+\cos x}{2} cos22x=21+cosx

对于正交函数集中的余弦 cos ⁡ ( n Ω t ) \cos(n \Omega t) cos(nΩt),由半角公式可得:

K i = ∫ − T 2 T 2 cos ⁡ ( n Ω t ) ⋅ cos ⁡ ( n Ω t ) d t = ∫ − T 2 T 2 1 + cos ⁡ ( 2 n Ω t ) 2 d t = T / 2 K_i=\int _{-\frac{T}{2}}^{\frac{T}{2}}\cos(n \Omega t)\cdot \cos(n \Omega t)dt=\int _{-\frac{T}{2}}^{\frac{T}{2}}\frac{1+\cos(2n \Omega t)}{2}dt=T/2 Ki=2T2Tcos(nΩt)cos(nΩt)dt=2T2T21+cos(2nΩt)dt=T/2

同理,对于正交函数集中的正弦 sin ⁡ ( n Ω t ) \sin(n \Omega t) sin(nΩt)

K i = ∫ − T 2 T 2 sin ⁡ ( n Ω t ) ⋅ sin ⁡ ( n Ω t ) d t = ∫ − T 2 T 2 1 − cos ⁡ ( 2 n Ω t ) 2 d t = T / 2 K_i=\int _{-\frac{T}{2}}^{\frac{T}{2}}\sin(n \Omega t)\cdot \sin(n \Omega t)dt=\int _{-\frac{T}{2}}^{\frac{T}{2}}\frac{1-\cos(2n \Omega t)}{2}dt=T/2 Ki=2T2Tsin(nΩt)sin(nΩt)dt=2T2T21cos(2nΩt)dt=T/2

(2)得到系数:
a 0 2 = 1 T ∫ − T 2 T 2 f ( t ) d t \frac{a_{0}}{2}= \frac{1}{T}\int _{- \frac{T}{2}}^{\frac{T}{2}}f(t)dt 2a0=T12T2Tf(t)dt
备注:写成 a 0 2 \frac{a_{0}}{2} 2a0是为了使得 a 0 a_0 a0可以并入 a n a_n an的表达式,因为1对应的 K i K_i Ki与其他不同。

a n = 2 T ∫ − T 2 T 2 f ( t ) cos ⁡ ( n Ω t ) d t a_{n}= \frac{2}{T}\int _{- \frac{T}{2}}^{\frac{T}{2}}f(t)\cos(n \Omega t)dt an=T22T2Tf(t)cos(nΩt)dt
b n = 2 T ∫ T 2 T 2 f ( t ) sin ⁡ ( n Ω t ) d t b_{n}= \frac{2}{T}\int _{\frac{T}{2}}^{\frac{T}{2}}f(t)\sin(n \Omega t)dt bn=T22T2Tf(t)sin(nΩt)dt

备注:积分区间不一定要 [ − T 2 , T 2 ] [-\frac{T}{2},\frac{T}{2}] [2T,2T],只要是个整周期区间就行,比如 [ 0 , T ] [0,T] [0,T]

备注 a n a_n an为关于 n n n的偶函数, b n b_n bn为关于 n n n的奇函数。

下面给出与文章开头的图相对应的一个例子。

在这里插入图片描述

备注:实际上, a n = 0 a_n=0 an=0为关于 n n n的奇函数,可以直接得出 a n = 0 a_n=0 an=0

在这里插入图片描述

在这里插入图片描述

1.2 余弦形式的傅里叶级数

备注:辅助角公式:

a sin ⁡ x + b cos ⁡ x = a 2 + b 2 cos ⁡ ( x + ϕ ) ,  其中  tan ⁡ ϕ = − a / b a\sin x+b\cos x=\sqrt{a^2+b^2} \cos ({x}+\phi), \quad \text { 其中 } \tan \phi=-a / b asinx+bcosx=a2+b2 cos(x+ϕ), 其中 tanϕ=a/b

由辅助角公式,将傅里叶级数
f ( t ) = a 0 2 + ∑ n = 1 ∞ a n cos ⁡ ( n Ω t ) + ∑ n = 1 ∞ b n sin ⁡ ( n Ω t ) f(t)= \frac{a_{0}}{2}+ \sum _{n=1}^{\infty}a_{n}\cos(n \Omega t)+ \sum _{n=1}^{\infty}b_{n}\sin(n \Omega t) f(t)=2a0+n=1ancos(nΩt)+n=1bnsin(nΩt)

n n n次正余弦分量合并,得到:

f ( t ) = A 0 2 + ∑ n = 1 ∞ A n cos ⁡ ( n Ω t + φ n ) f(t)= \frac{A_{0}}{2}+ \sum _{n=1}^{\infty}A_{n}\cos(n \Omega t+ \varphi _{n}) f(t)=2A0+n=1Ancos(nΩt+φn)
其中
{ A n = a n 2 + b n 2 φ n = − arctan ⁡ b n a n \left\{ \begin{matrix} A_{n}= \sqrt{a_{n}^{2}+b_{n}^{2}}\\ \varphi _{n}=- \arctan \frac{b_{n}}{a_{n}}\\ \end{matrix} \right. {An=an2+bn2 φn=arctananbn

{ a n = A n cos ⁡ φ n b n = − A n sin ⁡ φ n \left\{ \begin{matrix} a_{n}=A_{n}\cos \varphi _{n}\\ b_{n}=-A_{n}\sin \varphi _{n}\\ \end{matrix} \right. {an=Ancosφnbn=Ansinφn

2 复指数形式的傅里叶级数

备注欧拉公式

e j x = cos ⁡ x + j sin ⁡ x e^{jx}=\cos x+j\sin x ejx=cosx+jsinx

sin ⁡ x = e j x − e − j x 2 j \sin x=\frac{e^{jx}-e^{-jx}}{2j} sinx=2jejxejx

cos ⁡ x = e j x + e − j x 2 \cos x=\frac{e^{jx}+e^{-jx}}{2} cosx=2ejx+ejx

三角形式的傅里叶级数含义比较明确,但不太方便我们进行运算,因而将其变换为复指数形式的傅里叶级数。

由欧拉公式可得:

f ( t ) = A 0 2 + ∑ n = 1 ∞ A n cos ⁡ ( n Ω t + φ n ) f(t)= \frac{A_{0}}{2}+ \sum _{n=1}^{\infty}A_{n}\cos(n \Omega t+ \varphi _{n}) f(t)=2A0+n=1Ancos(nΩt+φn)
= A 0 2 + ∑ n = 1 ∞ A n 2 [ e j ( n Ω t + φ n ) + e − j ( n Ω t + φ n ) ] = \frac{A_{0}}{2}+ \sum _{n=1}^{\infty}\frac{A_{n}}{2}\left[ e^{j(n \Omega t+ \varphi _{n})}+e^{-j(n \Omega t+ \varphi _{n})}\right] =2A0+n=12An[ej(nΩt+φn)+ej(nΩt+φn)]

= A 0 2 + 1 2 ∑ n = 1 ∞ A n e j φ n e j n Ω t + 1 2 ∑ n = 1 ∞ A n e − j φ n e − j n Ω t = \frac{A_{0}}{2}+ \frac{1}{2}\sum _{n=1}^{\infty}A_{n}e^{j \varphi _{n}}e^{jn\Omega t}+\textcolor{blue}{ \frac{1}{2}\sum _{n=1}^{\infty}A_{n}e^{-j \varphi _{n}}e^{-jn\Omega t}} =2A0+21n=1AnejφnejnΩt+21n=1AnejφnejnΩt


对蓝色部分的公式进行参数变换:
− n → n -n\rightarrow n nn
A − n = A n A_{-n}=A_n An=An
φ − n → − φ n \varphi_{-n}\rightarrow -\varphi_n φnφn
得到:

1 2 ∑ n = 1 ∞ A n e − j φ n e − j n Ω t → 1 2 ∑ n = − 1 − ∞ A n e j φ n e j n Ω t \frac{1}{2}\sum _{n=1}^{\infty}A_{n}e^{-j \varphi _{n}}e^{-jn\Omega t}\rightarrow \textcolor{blue}{\frac{1}{2}\sum _{n=-1}^{-\infty}A_{n}e^{j \varphi _{n}}e^{jn\Omega t}} 21n=1AnejφnejnΩt21n=1AnejφnejnΩt

在这里插入图片描述


变换后的公式为:

f ( t ) = 1 2 ∑ n = − ∞ ∞ A n e j φ n e j n Ω t f(t)= \frac{1}{2}\sum _{n=- \infty}^{\infty}A_{n}e^{j \varphi _{n}}e^{jn \Omega t} f(t)=21n=AnejφnejnΩt

其中 e j n Ω t \mathrm{e}^{j n \Omega t} ejnΩt为复指数函数, A n = a n 2 + b n 2 A_{n}= \sqrt{a_{n}^{2}+b_{n}^{2}} An=an2+bn2 φ n = − arctan ⁡ b n a n \varphi _{n}=- \arctan \frac{b_{n}}{a_{n}} φn=arctananbn

A n A_n An为偶函数, φ n \varphi_n φn为奇函数。

令复数 1 2 A n e j φ n = ∣ F n ∣ e j φ n = F n \frac{1}{2}A_{n}e^{j \varphi _{n}}=|F_{n}|e^{j \varphi _{n}}=F_{n} 21Anejφn=Fnejφn=Fn,称 F n F_n Fn为复傅里叶系数,简称傅里叶系数。

得到指数形式的傅里叶级数:

f ( t ) = ∑ n = − ∞ ∞ F n e j n Ω t f(t)= \sum _{n=- \infty}^{\infty}F_{n}e^{jn \Omega t} f(t)=n=FnejnΩt
表明:任意周期函数 f ( t ) f(t) f(t)可分解为许多不同频率的虚指数函数之和 F n F_n Fn是频率为 n Ω nΩ n的分量的系数, F 0 = A 0 / 2 F_0= A_0/2 F0=A0/2为直流分量。

复傅里叶系数 F n F_n Fn的求解公式:
F n = 1 2 A n e j φ n = 1 2 ( A n cos ⁡ φ n + j A n sin ⁡ φ n ) = 1 2 ( a n − j b n ) F_{n}= \frac{1}{2}A_{n}e^{j \varphi _{n}}= \frac{1}{2}(A_{n}\cos \varphi _{n}+jA_{n}\sin \varphi _{n})= \frac{1}{2}(a_{n}-jb_{n}) Fn=21Anejφn=21(Ancosφn+jAnsinφn)=21(anjbn)
= 1 T ∫ − T 2 T 2 f ( t ) cos ⁡ ( n Ω t ) d t − j 1 T ∫ − T 2 T 2 f ( t ) sin ⁡ ( n Ω t ) d t = \frac{1}{T}\int _{-\frac{T}{2}}^{\frac{T}{2}}f(t)\cos(n \Omega t)dt-j \frac{1}{T}\int _{-\frac{T}{2}}^{\frac{T}{2}}f(t)\sin(n \Omega t)dt =T12T2Tf(t)cos(nΩt)dtjT12T2Tf(t)sin(nΩt)dt
= 1 T ∫ − T 2 T 2 f ( t ) e − j n Ω t d t = \textcolor{blue}{\frac{1}{T}\int _{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-jn\Omega t}dt} =T12T2Tf(t)ejnΩtdt

3 三种展开方式关系总结

三角形式的傅里叶级数:

f ( t ) = a 0 2 + ∑ n = 1 ∞ a n cos ⁡ ( n Ω t ) + ∑ n = 1 ∞ b n sin ⁡ ( n Ω t ) f(t)= \frac{a_{0}}{2}+ \sum _{n=1}^{\infty}a_{n}\cos(n \Omega t)+ \sum _{n=1}^{\infty}b_{n}\sin(n \Omega t) f(t)=2a0+n=1ancos(nΩt)+n=1bnsin(nΩt)
f ( t ) = A 0 2 + ∑ n = 1 ∞ A n cos ⁡ ( n Ω t + φ n ) f(t)= \frac{A_{0}}{2}+ \sum _{n=1}^{\infty}A_{n}\cos(n \Omega t+ \varphi _{n}) f(t)=2A0+n=1Ancos(nΩt+φn)

{ A n = a n 2 + b n 2 φ n = − arctan ⁡ b n a n \left\{ \begin{matrix} A_{n}= \sqrt{a_{n}^{2}+b_{n}^{2}}\\ \varphi _{n}=- \arctan \frac{b_{n}}{a_{n}}\\ \end{matrix} \right. {An=an2+bn2 φn=arctananbn

{ a n = A n cos ⁡ φ n b n = − A n sin ⁡ φ n \left\{ \begin{matrix} a_{n}=A_{n}\cos \varphi _{n}\\ b_{n}=-A_{n}\sin \varphi _{n}\\ \end{matrix} \right. {an=Ancosφnbn=Ansinφn

指数形式的傅里叶级数:

f ( t ) = ∑ n = − ∞ ∞ F n e j n Ω t f(t)= \sum _{n=- \infty}^{\infty}F_{n}e^{jn \Omega t} f(t)=n=FnejnΩt

F n = ∣ F n ∣ e j φ n = 1 2 A n e j φ n = 1 2 ( A n cos ⁡ φ n + j A n sin ⁡ φ n ) = 1 2 ( a n − j b n ) F_{n}=|F_{n}|e^{j \varphi _{n}}= \frac{1}{2}A_{n}e^{j \varphi _{n}}= \frac{1}{2}(A_{n}\cos \varphi _{n}+jA_{n}\sin \varphi _{n})= \frac{1}{2}(a_{n}-jb_{n}) Fn=Fnejφn=21Anejφn=21(Ancosφn+jAnsinφn)=21(anjbn)
A n = 2 ∣ F n ∣ A_n=2|F_n| An=2Fn

附 :狄里赫利(Dirichlet)条件

条件1:在一个周期内,函数连续或只有有限个第一类间断点(间断点左右极限都存在);

反例(无限个第一类间断点):
在这里插入图片描述

条件2:在一个周期内,函数极大值和极小值的数目应为有限个;

反例:

在这里插入图片描述
条件3:在一个周期内,函数绝对可积。

反例:
在这里插入图片描述

参考:

国家精品课程:信号与系统 ,中国大学MOOC,郭宝龙,朱娟娟

十分感谢三连支持!最靓的公式送给最靓的你:

e i π + 1 = 0 e^{i\pi}+1=0 eiπ+1=0

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二进制人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值