【Numpy】np.add.at 示例

文章介绍了如何使用NumPy库中的`np.add.at`函数,在一维和二维数组中根据给定的索引位置进行元素级别的加法操作,以实现特定元素值的累加。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一维数组

import numpy as np

n_classes = 4
vector = np.zeros([n_classes])
print(vector)
idx = np.array([1, 3, 0])

# 在[1], [3], [0] 位置上加1
np.add.at(vector, idx , 1)
print(vector)

[0. 0. 0. 0.]

[1. 1. 0. 1.]

二维数组

import numpy as np

n_classes = 4
confusion_matrix = np.zeros([n_classes, n_classes])
print(confusion_matrix)
idx = np.array([1, 3, 0])
idy = np.array([1, 2, 1])

# 在[1,1]、[3,2]、[0,1] 位置上加1
np.add.at(confusion_matrix, (idx , idy), 1)
print(confusion_matrix)
[[0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]]

[[0. 1. 0. 0.]
 [0. 1. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 1. 0.]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二进制人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值