题目描述:
输入一个高度为h,输出一个高为h,上底边为h的梯形。
输入:
一个整数h(1<=h<=1000)。
输出:
h所对应的梯形
样例输入:
4
样例输出:
****
******
********
**********
第0行h个*,第 i 行h+2i个*,最后一行(第h-1行)h+2(h-1)=3h-2个*。
第 i 行空格的个数:一行的最大*数-第i行的*数=h+2(h-1)-(h+2i)=2h-2i-2。
代码如下:
#include<iostream>
using namespace std;
int main(){
int h;
while(cin>>h){
for(int i=0;i<h;i++){
for(int j=0;j<3*h-2;j++){
if(j<2*h-2*i-2){
cout<<" ";
}else{
cout<<"*";
}
}
cout<<endl;
}
}
return 0;
}
运行结果如下图所示:
题目描述:
输入n值,输入上底为n,高是n的一半的等腰实心梯形
输入样例:5
输出样例:
*****
*******
*********
分析如下:
1、梯形的高度h=round(n/2)(#include<cmath>)->图形的行数为h
2、首行有n个*,下一行总比上一行多两个*,故第i行有n+2*(i-1)个*
3、最后一行中*的数量决定了图像的列数->列数为n+2*(h-1)
4、空格数是列数与该行中*数量之差即n+2*(h-1)-(n+2*(i-1))=2*(h-i)
代码如下:
#include<iostream>
#include<cmath>
using namespace std;
int main(){
int i,j;
double n;
cin>>n;
double h=round(n/2);
for(i=1;i<=h;i++){//round(x):四舍五入
for(j=2*(h-i);j>0;j--){
cout<<" ";
}
for(j=n+2*(i-1);j>0;j--){
cout<<"* ";
}
cout<<endl;
}
return 0;
}
运行结果如下图所示:
题目描述:输出一个n层的倒三角
分析如下:
1、图形的行数row=n个#
2、第一行中#的数量决定了图像的列数->列数col=1+2*(n-1)
代码如下:
#include<iostream>
using namespace std;
int main(){
int n;
while(cin>>n){
int row=n;
int col=1+2*(n-1);
for(int i=row;i>=1;i--){
for(int j=1;j<=col;j++){
if(j<= n-i || j>col-(n-i)){
cout<<" ";
}else{
cout<<"#";
}
}
cout<<endl;
}
}
return 0;
}