凸优化——详解对偶和鞍点

本文详细探讨了凸优化中的对偶问题,包括弱对偶和强对偶的概念,以及满足强对偶的Slater条件。介绍了原问题与对偶问题的几何和经济学解释,阐述了鞍点的定义及其与原问题、对偶问题的关系,最后提到了拉格朗日函数的鞍点定理。
摘要由CSDN通过智能技术生成

对偶

原问题的最优解(最小解) p ∗ p^* p一定是大于等于其对偶问题的最优解(最大值) d ∗ d^* d的:
p ∗ > = d ∗ p^*>=d^* p>=d
这是对偶问题最重要的一条性质

弱对偶

满足 p ∗ > = d ∗ p^*>=d^* p>=d,这就是弱对偶性,无论原函数是不是凸的,只要有解就一定满足前述不等式,也就是说一定都是弱对偶的。

强对偶

如果一个问题 p ∗ = d ∗ p^*=d^* p=d,那原问题和对偶问题就是强对偶的。也就是最优对偶间隙 p ∗ − d ∗ p^*-d^* pd为0;()

相对内部

在这里插入图片描述
数学家总是把很简单的问题复杂化。其实你了解含义之后再读公式就不复杂了,两个公式唯一区别就是不等号是严格成立还是非严格,也就是说相对可行内点集就是去掉边界的可行集。(“相对内部”这个概念还有另一种牵涉到仿射包和圆的解释,就不介绍了)
强对偶一般情况下都是成立的,不过作为数学推导,你还是需要用斯莱特条件去验证一下

我们最想要的一定是强对偶情况,因为这样我们就可以把原问题最优解改为求对偶问题的最优解。所以最重要的问题就变成了什么问题是强对偶问题???

slater条件or约束:

要使用Slater条件的先决条件是原问题必须是凸问题(凸的目标函数和不等式约束+仿射的等式约束),然后,Slater条件如下:

  1. 满足等式约束
  2. 满足不等式约束但除去等号(注意:这里是把约束增强了)
    也就是 x ∈ r e l i n t ( D ) x\in relint(D) xrelint(D)
    有些问题反过来想可能比较容易想出来,什么是不满足slater条件的凸问题?就是凸问题如果把它不等式约束换成绝对不等式,定义域就是空集了

满足Slater条件的凸问题==>强对偶成立该问题对偶问题最优解等于原问题最优解

看到一个新的定义、定理,我们来反思一下它是什么意思,
看着好像很复杂,但其实很容易对吧,其实就是给不等式条件剥了层皮!

注意等号是单向的,反过来未必成立。也就是一般问题、非凸问题也可能是强对偶问题,凸问题,不满足这些条件也可能强对偶成立。
在这里插入图片描述

//
//
上面的暂且称为严格的Slater条件,因为对不等式的要求是严格成立,下面介绍改进的,也是放宽松的Slater约束:
我还是喜欢用文字描述,否则跟数学书没区别了。
不等式约束中有些是仿射函数,这些仿射函数我们就不要求它严格遵守不等式了,他们的不等式被允许带等号。这就成为了宽松的Slater条件。**也就是Slater条件主要约束了不等式约束中非仿射/线性的那部分约束。**当问题只有线性/仿射不等式约束那Slater约束对这个问题就没意义了。

例子

书里介绍两个例子,证明过程看着都十分十分痛苦。直接给结论:
原问题是:

  1. 线性规划:无论是标准形式还是不等式形式,只要原问题可行,强对偶一定成立,所以遇到线性规划不容易求我们求其对偶问题也可以。‘
  2. QCQP 问题:即二次约束二次 规划问题,当二次约束严格成立时,强对偶成立。

几何解释

经济学解释

原问题的解释

m i n i m i z e f 0 ( x ) minimize f_0(x) minimizef0(x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值