当你开始炒鞋,你的半只脚已踏入币圈

640?wx_fmt=gif

作者:洒脱喜

“70后炒股,80后炒房,90后炒币,00后炒鞋。”

近期,一股浓浓的炒作风在高中生、大学生圈子传开,“1个小时翻5倍”、“单只球鞋卖出数十万天价”、“大学生炒鞋月入过万”等夺人眼球的标题迅速登上了各大媒体。

而炒鞋的方式分为两种:

  1. 通过官方渠道抢鞋,然后再卖给他人赚利差;

  2. 囤货,借热点拉高价位后卖给他人;

显然,这已经与过往球鞋爱好者们之间的收藏买卖本质大为不同(收藏家花重金购买篮球明星鞋子的事并不是什么新鲜事)。

而针对炒鞋市场的兴起,相关炒作APP也在不断诞生。

甚至有部分“币圈”的玩家也经不住诱惑,跑去“鞋圈”参与了这波炒作……

具有稀缺属性,就适合炒作?

实际上,无论是地皮、黄金、字画、古董、比特币还是鞋子等等,只要一种东西具有稀缺属性,那么人们可能就会去参与炒作它们,一句“物以稀为贵”就是在讲这个现象。

那么讲到稀缺性,我们就不得不提到历史上著名的“郁金香泡沫”事件和“密西西比泡沫”事件。

17世纪的荷兰,当时的郁金香分为两种:稀有郁金香和普通郁金香。

640?wx_fmt=jpeg

稀有郁金香的产生是随机的,其繁殖又很慢,因此珍贵品种的郁金香供给是非常有限的,由于法国贵妇人的偏爱,稀有郁金香的价格呈现出上涨趋势,而相比之下,普通郁金香的培育就非常容易,因此供给要大的多,而我们所熟知的“郁金香泡沫”事件,却是发生在普通郁金香身上的,其价格在短期内出现了上百倍的暴涨暴跌。

另外一个著名的历史例子,就是“密西西比泡沫”。

“1716年约翰·劳经法国政府与其设立的密西西比公司掀起了一阵股票投机狂潮,其发行的股票被抢售一空,无论是豪门显贵还是村夫野汉,不分男女老少都幻想从劳氏股票中获得无尽的财富。股票价格涨了又涨,直线飚升。有时在几个小时内就可以上扬10到20个百分点。早上出门一贫如洗的人,晚上归家时就可以腰缠万贯。

而劳氏纸币的严重超发导致了严重的通货膨胀,法国老百姓也渐渐察觉到了,手里的钱越来越多,能买得起的东西却在变少。而且密西西比公司根本就不赚钱,实际上这个公司一分钱收入也没有,就是替法国国王圈钱的壳子。人们明白这一点之后,就像一开始疯狂购买股票那样,疯狂地卖掉股票。最后公司破产、银行倒闭,纸币也成了废纸。

通过以上两大历史例子,我们可以看到,炒作皆因稀缺性而起,却因失去稀缺性而崩溃。

而这就涉及到另一个属性:可复制性,或者是另一个说法“是否容易造假?”

今天,我们看到鞋圈在爆发,但我们需要认真面对这样一个问题:

“球鞋是否不可复制,是否不容易造假?”

就像密西西比泡沫一样,一旦鞋子被炒上了天价,你能否保证NIKE不去增发鞋子,你能否保证“A货科学家”的复制技术不够硬?

笔者的看法并不乐观,另外,鞋子的可分割性、耐久性、便利性都很糟糕,短期球鞋可能是个好的炒作标的,但绝不是好的价值存储,个人认为,最终普通限量鞋会和普通的郁金香一样回归理性价格。

640?wx_fmt=jpeg

(图片来自:熊越XiongYue)

相比之下,经历10年多发展的比特币,因为硬编码和社区共识的原因,导致其稀缺性已被固定,此外比特币的可分割性、耐久性、便利性、防伪性都远胜球鞋,甚至超过了黄金,这也是其炒作能够不断持续的原因,甚至很多人已将其视作一种好的价值存储,而这是球鞋无法实现的。

万物皆可炒,token可替万物

当然,球鞋炒作的现象已经存在,批判实际上毫无意义。

鞋圈的人会说:

“万物皆可炒!”

实际币圈里还有一句话叫“Tokenize Everything”,意思就是“任何事物都可化身为币”。

通过区块链,我们完全可把球鞋的所有权token化,并拿出来交易,这样就可解决伪造的问题,想象一下,当NIKE公司要发售一款新的球鞋,其通过以太坊或者其他公链发行一个新的token,然后参与者就可通过抽签或者其他方式抢购这款新球鞋,抢到之后,NIKE公司就把相应的球鞋发送给参与者。

而参与者之间,可凭借token来进行自由交易,而实物交接交易必须是整数(1、2、3……),在市场早期阶段,这需要通过第三方中介(交易所)完成,参与者完成鞋的交接之后,交易所负责放行token的转移。而在智能合约技术完善之后,这类交易还可通过DEX(去中心化交易所)完成。

甚至我们还可以把一种事物化为两种token,一种代表所有权,另一种代表炒作权,所有权必须是整数交易,而炒作权就可无限分割……

那么最终可能的结果就是,炒作被分离了出来,参与炒作也变得更为容易。

所以,现在参与炒鞋的,其实不知不觉中,你已身在币圈。

推荐阅读

比特币到底有没有庄家?

万万没想到我被警察找上门了

比特币就是一种赌博么?

从时间上算,我和李笑来是同一批人

更多关键词:矿工 | 51%攻击 | 奥本聪 | 李笑来

燃点 | 孟岩 | 白硕 | 肖风

长铗 | 李国权 | 蚂蚁金服 | 来学嘉

640?wx_fmt=jpeg

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值