4.4 Divide and Conquer
1) 概述
分治思想
- 将大问题划分为两个到多个子问题
- 子问题可以继续拆分成更小的子问题,直到能够简单求解
- 如有必要,将子问题的解进行合并,得到原始问题的解
之前学过的一些经典分而治之的例子
- 二分查找
- 快速排序
- 归并排序
- 合并K个排序链表 - LeetCode 23
二分查找
public static int binarySearch(int[] a, int target) {
return recursion(a, target, 0, a.length - 1);
}
public static int recursion(int[] a, int target, int i, int j) {
if (i > j) {
return -1;
}
int m = (i + j) >>> 1;
if (target < a[m]) {
return recursion(a, target, i, m - 1);
} else if (a[m] < target) {
return recursion(a, target, m + 1, j);
} else {
return m;
}
}
减而治之,每次搜索范围内元素减少一半
快速排序
public static void sort(int[] a) {
quick(a, 0, a.length - 1);
}
private static void quick(int[] a, int left, int right) {
if (left >= right) {
return;
}
int p = partition(a, left, right);
quick(a, left, p - 1);
quick(a, p + 1, right);
}
分而治之,这次分区基准点,在划分后两个区域分别进行下次分区
归并排序
public static void sort(int[] a1) {
int[] a2 = new int[a1.length];
split(a1, 0, a1.length - 1, a2);
}
private static void split(int[] a1, int left, int right, int[] a2) {
int[] array = Arrays.copyOfRange(a1, left, right + 1);
// 2. 治
if (left == right) {
return;
}
// 1. 分
int m = (left + right) >>> 1;
split(a1, left, m, a2);
split(a1, m + 1, right, a2);
// 3. 合
merge(a1, left, m, m + 1, right, a2);
System.arraycopy(a2, left, a1, left, right - left + 1);
}
分而治之,分到区间内只有一个元素,合并区间
合并K个排序链表 - LeetCode 23
public ListNode mergeKLists(ListNode[] lists) {
if (lists.length == 0) {
return null;
}
return split(lists, 0, lists.length - 1);
}
public ListNode split(ListNode[] lists, int i, int j) {
System.out.println(i + " " + j);
if (j == i) {
return lists[i];
}
int m = (i + j) >>> 1;
return mergeTwoLists(
split(lists, i, m),
split(lists, m + 1, j)
);
}
分而治之,分到区间内只有一个链表,合并区间
对比动态规划
- 都需要拆分子问题
- 动态规划的子问题有重叠、因此需要记录之前子问题解,避免重复运算
- 分而治之的子问题无重叠
2) 快速选择算法
public class Utils {
static int quick(int[] a, int left, int right, int index) {
int p = partition(a, left, right);
if (p == index) {
return a[p];
}
if (p < index) {
return quick(a, p + 1, right, index);
} else {
return quick(a, left, p - 1, index);
}
}
static int partition(int[] a, int left, int right) {
int idx = ThreadLocalRandom.current().nextInt(right - left + 1) + left;
swap(a, left, idx);
int pv = a[left];
int i = left + 1;
int j = right;
while (i <= j) {
// i 从左向右找大的或者相等的
while (i <= j && a[i] < pv) {
i++;
}
// j 从右向左找小的或者相等的
while (i <= j && a[j] > pv) {
j--;
}
if (i <= j) {
swap(a, i, j);
i++;
j--;
}
}
swap(a, j, left);
return j;
}
static void swap(int[] a, int i, int j) {
int t = a[i];
a[i] = a[j];
a[j] = t;
}
}
数组中第k个最大元素-Leetcode 215
public class FindKthLargestLeetcode215 {
/*
目标 index = 4
3 2 1 5 6 4
=> 3 2 1 4 5 6 (3)
=> 3 2 1 4 5 6 (5)
=> 3 2 1 4 5 6 (4)
*/
public int findKthLargest(int[] a, int k) {
return Utils.quick(a, 0, a.length - 1, a.length - k);
}
public static void main(String[] args) {
// 应为5
FindKthLargestLeetcode215 code = new FindKthLargestLeetcode215();
System.out.println(code.findKthLargest(new int[]{3, 2, 1, 5, 6, 4}, 2));
// 应为4
System.out.println(code.findKthLargest(new int[]{3, 2, 3, 1, 2, 4, 5, 5, 6}, 4));
}
}
数组中位数
public class FindMedian {
/*
偶数个
3 1 5 4
奇数个
4 5 1
4 5 1 6 3
*/
public static double findMedian(int[] nums) {
if (nums.length % 2 != 0) {
return findIndex(nums, nums.length / 2);
} else {
System.out.println((nums.length / 2 - 1) + "," + (nums.length / 2));
int a = findIndex(nums, nums.length / 2);
int b = findIndex(nums, nums.length / 2 - 1);
return (a + b) / 2.0;
}
}
public static void main(String[] args) {
System.out.println(findMedian(new int[]{3, 1, 5, 4}));
System.out.println(findMedian(new int[]{3, 1, 5, 4, 7, 8}));
System.out.println(findMedian(new int[]{4, 5, 1}));
System.out.println(findMedian(new int[]{4, 5, 1, 6, 3}));
}
static int findIndex(int[] a, int index) {
return Utils.quick(a, 0, a.length - 1, index);
}
}
3) 快速幂-Leetcode 50
public class QuickPowLeetcode50 {
/*
2^10
/ \
2^5 2^5
/ \ / \
2 2^2 2^2 2 2^2 2^2
/ \ / \ / \ / \
2 2 2 2 2 2 2 2
256 n=1 x=65536 mul=1024
/ \
16 16 n=2 x=256 mul=4
/ \ / \
2 4 4 2 4 4 n=5 x=16 mul=4
/ \ / \ / \ / \
2 2 2 2 2 2 2 2 n=10 x=4 mul=1
*/
static double myPow(double x, int n) {
if (n == 0) {
return 1;
}
double mul = 1;
long N = n;
if (n < 0) {
N = -N;
}
while (N > 0) {
if ((N & 1) == 1) {
mul *= x;
}
x = x * x;
N = N >> 1;
}
return n > 0 ? mul : 1 / mul;
}
static double myPow1(double x, int n) {
long N = n;
if (N < 0) {
return 1.0 / rec(x, -N);
}
return rec(x, n);
}
static double rec(double x, long n) {
if (n == 0) {
return 1;
}
if (n == 1) {
return x;
}
double y = rec(x, n / 2);
if ((n & 1) == 1) {
return x * y * y;
}
return y * y;
}
public static void main(String[] args) {
System.out.println(myPow(2, 10)); // 1024.0
System.out.println(myPow(2.1, 3)); // 9.261
System.out.println(myPow(2, -2)); // 0.25
System.out.println(myPow(2, 0)); // 1.0
System.out.println(myPow(2, -2147483648)); // 1.0
}
}
4) 平方根整数部分-Leetcode 69
public class SqrtLeetcode69 {
static int mySqrt(int x) {
int i = 1, j = x;
int r = 0;
while (i <= j) {
int m = (i + j) >>> 1;
if (x / m >= m) {
r = m;
i = m+1;
} else {
j = m-1;
}
}
return r;
}
public static void main(String[] args) {
System.out.println(mySqrt(1));
System.out.println(mySqrt(2));
System.out.println(mySqrt(4));
System.out.println(mySqrt(8));
System.out.println(mySqrt(9));
}
}
- while(i <= j) 含义是在此区间内,只要有数字还未尝试,就不算结束
- r 的作用是保留最近一次当 m 2 < = x m^2 <= x m2<=x 的 m 的值
- 使用除法而非乘法,避免大数相乘越界
5) 至少k个重复字符的最长子串-Leetcode 395
public class LongestSubstringLeetcode395 {
static int longestSubstring(String s, int k) {
// 子串落选情况
if (s.length() < k) {
return 0;
}
int[] counts = new int[26]; // 索引对应字符 值用来存储该字符出现了几次
char[] chars = s.toCharArray();
for (char c : chars) { // 'a' -> 0 'b' -> 1 ....
counts[c - 'a']++;
}
System.out.println(Arrays.toString(counts));
for (int i = 0; i < chars.length; i++) {
char c = chars[i];
int count = counts[c - 'a']; // i字符出现次数
if (count > 0 && count < k) {
int j = i + 1;
while(j < s.length() && counts[chars[j] - 'a'] < k) {
j++;
}
System.out.println(s.substring(0, i) + "\t" + s.substring(j));
return Integer.max(
longestSubstring(s.substring(0, i), k),
longestSubstring(s.substring(j), k)
);
}
}
// 子串入选情况
return s.length();
}
public static void main(String[] args) {
// i j
System.out.println(longestSubstring("aaaccbbb", 3)); // ababb
System.out.println(longestSubstring("dddxaabaaabaacciiiiefbff", 3));
// System.out.println(longestSubstring("ababbc", 3)); // ababb
// System.out.println(longestSubstring("ababbc", 2)); // ababb
/*
ddd aabaaabaa iiii fbff
aa aaa aa f ff
统计字符串中每个字符的出现次数,移除哪些出现次数 < k 的字符
剩余的子串,递归做此处理,直至
- 整个子串长度 < k (排除)
- 子串中没有出现次数 < k 的字符
*/
}
}
本文,已收录于,我的技术网站 pottercoding.cn,有大厂完整面经,工作技术,架构师成长之路,等经验分享!