布隆过滤器使用场景
例如如下问题:
(1)字处理软件中,需要检查一个英语单词是否拼写正确
(2)在 FBI,一个嫌疑人的名字是否已经在嫌疑名单上
(3)在网络爬虫里,一个网址是否被访问过
(4)yahoo, gmail等邮箱垃圾邮件过滤功能
以上这些场景有个共同的问题:如何查看一个东西是否在有大量数据的池子里面。
布隆过滤器原理
布隆过滤器包含一个超大的位数组 以及 k个hash函数(每个hash函数的作用就是将元素映射到位数组的一个位置上)
总体思路是,向过滤器中添加元素时,就是通过k个不同的hash函数对该元素进行hash运算,得到k个位置,然后将位数组中这k个位置上的值置为1。当要查询一个元素是否在布隆过滤器中时,将这个元素通过k个hash函数得到k个位置,如果这k个位置上有1个位置是0,则肯定不再布隆过滤器中。如果都是1则可能在过滤器中。
以上图为例,具体的操作流程:假设集合里面有3个元素{x, y, z},哈希函数的个数为3。首先将位数组进行初始化,将里面每个位都设置位0。对于集合里面的每一个元素,将元素依次通过3个哈希函数进行映射,每次映射都会产生一个哈希值,这个值对应位数组上面的一个点,然后将位数组对应的位置标记为1。查询W元素是否存在集合中的时候,同样的方法将W通过哈希映射到位数组上的3个点。如果3个点的其中有一个点不为1,则可以判断该元素一定不存在集合中。反之,如果3个点都为1,则该元素可能存在集合中。注意:此处不能判断该元素是否一定存在集合中,可能存在一定的误判率。可以从图中可以看到:假设某个元素通过映射对应下标为4,5,6这3个点。虽然这3个点都为1,但是很明显这3个点是不同元素经过哈希得到的位置,因此这种情况说明元素虽然不在集合中,也可能对应的都是1,这是误判率存在的原因。
添加元素
将要添加的元素给k个哈希函数
得到对应于位数组上的k个位置
将这k个位置设为1
查询元素
将要查询的元素给k个哈希函数
得到对应于位数组上的k个位置
如果k个位置有一个为0,则肯定不在集合中(一般是将这k个结果做&运算)
如果k个位置全部为1,则可能在集合中
import java.util.BitSet;
public class SimpleBloomFilter {
private static final int DEFAULT_SIZE = 2 << 24; //位数组默认大小
private static final int[] seeds = new int[]{7, 11, 13, 31, 37, 61}; //五个hash函数的seed,可以自己定义hash函数个数。
private BitSet bitSet = new BitSet(DEFAULT_SIZE); //一个位数组
private SimpleHash[] hashs = new SimpleHash[seeds.length]; //5个hash函数,可以任意指定
public SimpleBloomFilter() {
for (int i = 0; i < hashs.length; i++) {
hashs[i] = new SimpleHash(DEFAULT_SIZE, seeds[i]);
}
}
public void add(String value){
for (int i = 0; i < hashs.length; i++) {
bitSet.set(hashs[i].hash(value), true); //将value通过5个hash计算,将每次的hash结果映射到位数组对应位上,并且该位置为1
}
}
public boolean contains(String value){
boolean result = true;
for (int i = 0; i < hashs.length; i++) { //通过5次hash,取出每次hash在位数组中对应的值,每次结果进行&&运算,即每个位上都是1,那么说明可能在集合中,如果有1个不为1,则肯定不再集合中,
result = result && bitSet.get(hashs[i].hash(value));
}
return result;
}
public static void main(String[] args) {
SimpleBloomFilter simpleBloomFilter = new SimpleBloomFilter();
String url = "www.baidu.com";
System.out.println(simpleBloomFilter.contains(url));
simpleBloomFilter.add(url);
System.out.println(simpleBloomFilter.contains(url));
}
//自定义的hash函数,作用是将元素映射到字节数组的某个位置上
class SimpleHash{
private int cap; //字节数组的容量,满足2^n
private int seed; //计算hash的种子,每指定一个种子,就生成不一样的hash
public SimpleHash(int cap, int seed) {
this.cap = cap;
this.seed = seed;
}
public int hash(String str){
int result = 0;
int len = str.length();
for (int i = 0; i < len; i++) { //这里求hash的方法就是,将str每个字符对应的ASSII编码累加起来
result = seed * result + str.charAt(i);
}
return result & (cap - 1); //让value所得到的hash落到BitSet的某个位置上
}
}
}