布隆过滤器

布隆过滤器是一种用于快速判断一个元素是否可能存在于大规模集合中的概率型数据结构,常用于内存有限的场景。它通过多个哈希函数将元素映射到位数组,误判率为其特性。在字处理、嫌疑人名单筛选、网络爬虫去重和邮件过滤等场景中有广泛应用。虽然可能会有误判,但因其高效性和节省空间的特性,仍然极具价值。
摘要由CSDN通过智能技术生成

布隆过滤器使用场景

例如如下问题:
(1)字处理软件中,需要检查一个英语单词是否拼写正确
(2)在 FBI,一个嫌疑人的名字是否已经在嫌疑名单上
(3)在网络爬虫里,一个网址是否被访问过
(4)yahoo, gmail等邮箱垃圾邮件过滤功能
以上这些场景有个共同的问题:如何查看一个东西是否在有大量数据的池子里面。

布隆过滤器原理

布隆过滤器包含一个超大的位数组 以及 k个hash函数(每个hash函数的作用就是将元素映射到位数组的一个位置上)
总体思路是,向过滤器中添加元素时,就是通过k个不同的hash函数对该元素进行hash运算,得到k个位置,然后将位数组中这k个位置上的值置为1。当要查询一个元素是否在布隆过滤器中时,将这个元素通过k个hash函数得到k个位置,如果这k个位置上有1个位置是0,则肯定不再布隆过滤器中。如果都是1则可能在过滤器中。
在这里插入图片描述
以上图为例,具体的操作流程:假设集合里面有3个元素{x, y, z},哈希函数的个数为3。首先将位数组进行初始化,将里面每个位都设置位0。对于集合里面的每一个元素,将元素依次通过3个哈希函数进行映射,每次映射都会产生一个哈希值,这个值对应位数组上面的一个点,然后将位数组对应的位置标记为1。查询W元素是否存在集合中的时候,同样的方法将W通过哈希映射到位数组上的3个点。如果3个点的其中有一个点不为1,则可以判断该元素一定不存在集合中。反之,如果3个点都为1,则该元素可能存在集合中。注意:此处不能判断该元素是否一定存在集合中,可能存在一定的误判率。可以从图中可以看到:假设某个元素通过映射对应下标为4,5,6这3个点。虽然这3个点都为1,但是很明显这3个点是不同元素经过哈希得到的位置,因此这种情况说明元素虽然不在集合中,也可能对应的都是1,这是误判率存在的原因。
添加元素
将要添加的元素给k个哈希函数
得到对应于位数组上的k个位置
将这k个位置设为1
查询元素
将要查询的元素给k个哈希函数
得到对应于位数组上的k个位置
如果k个位置有一个为0,则肯定不在集合中(一般是将这k个结果做&运算)
如果k个位置全部为1,则可能在集合中

import java.util.BitSet;

public class SimpleBloomFilter {
    private static final int DEFAULT_SIZE = 2 << 24; //位数组默认大小
    private static final int[] seeds = new int[]{7, 11, 13, 31, 37, 61}; //五个hash函数的seed,可以自己定义hash函数个数。

    private BitSet bitSet = new BitSet(DEFAULT_SIZE); //一个位数组
    private SimpleHash[] hashs = new SimpleHash[seeds.length]; //5个hash函数,可以任意指定

    public SimpleBloomFilter() {
        for (int i = 0; i < hashs.length; i++) {
            hashs[i] = new SimpleHash(DEFAULT_SIZE, seeds[i]);
        }
    }

    public void add(String value){
        for (int i = 0; i < hashs.length; i++) {
            bitSet.set(hashs[i].hash(value), true);   //将value通过5个hash计算,将每次的hash结果映射到位数组对应位上,并且该位置为1
        }
    }

    public boolean contains(String value){
        boolean result = true;
        for (int i = 0; i < hashs.length; i++) {       //通过5次hash,取出每次hash在位数组中对应的值,每次结果进行&&运算,即每个位上都是1,那么说明可能在集合中,如果有1个不为1,则肯定不再集合中,
            result = result && bitSet.get(hashs[i].hash(value));
        }
        return result;
    }

    public static void main(String[] args) {
        SimpleBloomFilter simpleBloomFilter = new SimpleBloomFilter();
        String url = "www.baidu.com";
        System.out.println(simpleBloomFilter.contains(url));
        simpleBloomFilter.add(url);
        System.out.println(simpleBloomFilter.contains(url));
    }

	//自定义的hash函数,作用是将元素映射到字节数组的某个位置上
    class SimpleHash{
        private int cap;  //字节数组的容量,满足2^n
        private int seed;  //计算hash的种子,每指定一个种子,就生成不一样的hash

        public SimpleHash(int cap, int seed) {
            this.cap = cap;  
            this.seed = seed;
        }
        public int hash(String str){
            int result = 0;
            int len = str.length();
            for (int i = 0; i < len; i++) {   //这里求hash的方法就是,将str每个字符对应的ASSII编码累加起来
                result = seed * result + str.charAt(i);
            }
            return result & (cap - 1);  //让value所得到的hash落到BitSet的某个位置上
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值