个人博客:https://www.vectormoon.net/
Bezier曲线算法:https://www.vectormoon.net/2020/09/25/Bezier/
算法产生背景
Bezier曲线有以下几个不足点,所以导致出现了B-spline算法:
- 一旦确定特征多边形,就确定了曲线的阶次
- Bezier曲线拼接复杂(需要满足几何连续性,参数连续性等)
- Bezier曲线不能作局部修改(只能整体修改)
B-spline算法是整条曲线用一段一段的曲线连接而成,采用分段连续多段式生成
B-spline曲线定义
B-spline曲线定义为:
P ( u ) = ∑ i = 0 n P i B i , k ( u ) u ∈ [ u k − 1 , u n + 1 ] P(u)=\sum_{i=0}^nP_iB_{i,k}(u) \qquad u\in [u_{k-1}, u_{n+1}] P(u)=i=0∑nPiBi,k(u)u∈[uk−1,un+1]
其中 P i P_i Pi是特征多边形的顶点; B i , k B_{i,k} Bi,k称为k阶(k-1次)基函数,B-spline算法阶数是次数加1,这是和Bezier算法的一个不同之处;定义域的解释之后会给出,先给出基函数算法。
B-spline基函数的求出算法应用最广泛的是deBoor-cox递推算法:
B i , k ( u ) = u − u i u i + k − 1 − u i ∗ B i , k − 1 u + u i + k − u u i + k − u i + 1 ∗ B i + 1 , k + 1 ( u ) B_{i,k}(u)=\frac{u-u_i}{u_{i+k-1}-u_i}*B_{i,k-1}{u}+\frac{u_{i+k}-u}{u_{i+k}-u_{i+1}}*B_{i+1,k+1}(u) Bi,k(u)=ui+k−1−uiu−ui∗Bi,k−1u+ui+k−ui+1ui+k−u∗Bi+1,k+1(u)
B i , 1 ( u ) = { 1 u i < u < u i + 1 ; 0 O t h e r w i s e . B_{i,1}(u)=\begin{cases}1 & u_i<u<u_{i+1};\\0 & Otherwise.\end{cases} Bi,1(u)={10ui<u<ui+1;Otherwise.
规定0/0=0
B-spline曲线的定义域为 u ∈ [ u k − 1 , u n + 1 ] u\in [u_{k-1}, u_{n+1}] u∈[uk−1,un+1]。设U为所有节点矢量的集合,显见节点表个数为 n + k + 1 n+k+1 n+k+1个。举例说明,当 n = 4 , k = 4 n=4,k=4 n=4,k=4时,有 U = { u 0 , u 1 , u 2 , u 3 , u 4 , u 5 , u 6 , u 7 , u 8 } U=\{u_0,u_1,u_2,u_3,u_4,u_5,u_6,u_7,u_8\} U={u0,u1,u2,u3,u4,u5,u6,u7,u8}。第一项为 P 0 B 0 , 4 ( u ) P_0B_{0,4}(u) P0B0,4(u),由deBoor-cox算法可知,其涉及到 u 0 u_0 u0到 u 4 u_4 u4五个点;第二项同理,设计到 u 1 u_1 u1到 u 5 u_5 u5五个点;其余同理;所以可以画出区间对应坐标轴:
区间合法所需要的条件为:区间内必须有足够基函数与顶点对应,也即区间中基函数覆盖较多的区间才是一个合法区间。所以上例中对应的合法区间为 u ∈ [ u 3 , u 5 ] u\in [u_{3}, u_{5}] u∈[u3,u5]也就是 u ∈ [ u k − 1 , u n + 1 ] u\in [u_{k-1}, u_{n+1}] u∈[uk−1,un+1]
B-spline的类型划分
有均匀B样条曲线,准均匀B样条曲线,分段Bezier曲线,非均匀B样条曲线这几种方法,这里采用均匀B样条曲线的方法绘制曲线。
均匀B样条曲线
定义:当节点沿参数轴均匀等距分布,即 u i + 1 − u i = C > 0 u_{i+1}-u_i=C>0 ui+1−ui=C>0时,为均匀B样条函数,比如: { 0 , 1 , 2 , 3 , 4 , 5 , 6 } , { 0 , 0.2 , 0.4 , 0.6 , 0.8 , 1 } \{0,1,2,3,4,5,6\},\{0,0.2,0.4,0.6,0.8,1\} {0,1,2,3,4,5,6},{0,0.2,0.4,0.6,0.8,1}
B-spline基函数( B i , k B_{i,k} Bi,k)的递推公式计算需要用到这里的思想。这里还使用上面当 n = 4 , k = 4 n=4,k=4 n=4,k=4的例子,从上面的定义可知,我们可以把节点集合 U = { u 0 , u 1 , u 2 , u 3 , u 4 , u 5 , u 6 , u 7 , u 8 } U=\{u_0,u_1,u_2,u_3,u_4,u_5,u_6,u_7,u_8\} U={u0,u1,u2,u3,u4,u5,u6,u7,u8}写成这样 U = { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 } U=\{0,1,2,3,4,5,6,7,8\} U={0,1,2,3,4,5,6,7,8}也即 u 0 = 0 , u 1 = 1 , . . . , u 8 = 8 u_0=0,u_1=1,...,u_8=8 u0=0,u1=1,...,u8=8,当然U也可以写成其他集合,因为计算的时候是一个比例,所以对计算结果并没有影响,综上就可以简单的算出对应基函数的值。
代码实现
def B_spline(p_list):
"""
:param p_list: (list of list of int:[[x0, y0], [x1, y1], ...])point set of p
result: (list of list of int:[[x0, y0], [x1, y1], ...])point on curve
绘制三次(四阶)均匀B样条曲线
"""
result = []
n = len(p_list)
k = 4
u = k-1
while (u < n+1):
x, y = 0, 0
#calc P(u)
for i in range(0, n):
B_ik = deBoor_Cox(u, k, i)
x += B_ik * p_list[i][0]
y += B_ik * p_list[i][1]
result.append((int(x+0.5), int(y+0.5)))
u += 1/20927 #2020/09/27
return result
def deBoor_Cox(u, k, i):
if k==1:
if i <= u and u <= i+1:
return 1
else:
return 0
else:
coef_1, coef_2 = 0, 0
if (u-i == 0) and (i+k-1-i == 0):
coef_1 = 0
else:
coef_1 = (u-i) / (i+k-1-i)
if (i+k-u == 0) and (i+k-i-1 == 0)
coef_2 = 0
else:
coef_2 = (i+k-u) / (i+k-i-1)
return coef_1 * deBoor_Cox(u, k-1, i) + coef_2 * deBoox_Cox(u, k-1, i+1)