深入解析:事件、概率、极大似然、似然、先验与后验的核心区别

在深度学习和机器学习中,事件、概率、极大似然、似然、先验、后验是统计学和概率论的核心概念,它们广泛用于优化模型参数、评估模型性能和进行推断。理解这些概念对于掌握贝叶斯推断、最大似然估计以及深度学习中的目标函数设计(如交叉熵)至关重要。以下是这些概念的详细阐述,包括定义、公式以及例子。

1. 事件

1.1 定义

事件是概率论中的基本概念,表示一种可能发生的结果或结果的集合。它可以是单个结果(简单事件)或多个结果的集合(复合事件)。在机器学习中,事件通常用来描述数据中的某些特定情况或模型的输出。例如,在分类问题中,某个样本被分类为“类别A”就是一个事件。

完整文章链接:深入解析:事件、概率、极大似然、似然、先验与后验的核心区别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值