赌石(数学)

这篇博客探讨了一个数学问题,涉及篮球和红球的组合取法。当两个桶中的球被依次取出,直到一个桶为空而另一个不空时,计算最后剩下两种球各一个的概率。博主通过C_div函数计算了组合数,并用概率论方法得出答案。程序代码展示了如何利用C_div函数解决此类问题,最终输出了保留两位小数的概率值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

256

p = 0.9500

玛题记题目, 此题是一个数学问题

n为蓝球、红球各自的数量,  输入给的是2n

      解析:这道题目的意思有点怪,它是想说两个通里的球依次取,当一个桶里为0,另一个不为0时也还可以继续取,那么剩余两个球就只有0 2, 2  0, 1 1三种情况,所以只要减去最后剩余1 1的情况即是答案,利用组合数学,剩下1 1,那么之前一共取走了2n - 2 个球,单次取红蓝球的概率都是0.5,组合顺序则有C^{_{2n-2}^{n-1}}(从2n - 2 个球中取出n - 1 个的方案数)种,所以本题的求解就是1-\frac{C^{_{2n-2}^{n-1}} }{2^{2n-2}}

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>

using namespace std;

typedef long double LD;

LD C_div(int k, int n)
{
    LD res = 1;
    
    for (int i = n, j = 1; j <= k; i -- , j ++ )
        res = res * i / j;
    
    for (int i = 1; i <= k; i ++ ) res /= (LD)4.0;
    return res;
}

int main()
{
    int n;
    cin >> n;
    
    n /= 2;
    
    printf("%.4llf", 1 - C_div(n - 1, 2 * n - 2));
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值